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Abstract

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digi-
tal Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in
2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under
consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm
problem and the integer factorization problem, no subexponential-time algorithm is known for the
elliptic curve discrete logarithm problem. For this reason, the strength-per-key-bit is substantially
greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA,
and discusses related security, implementation, and interoperability issues.

Keywords: Signature schemes, elliptic curve cryptography, DSA, ECDSA.
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1 Introduction

The Digital Signature Algorithm (DSA) was specified in a U.S. Government Federal Information
Processing Standard (FIPS) called the Digital Signature Standard (DSS [60]). Its security is based
on the computational intractability of the discrete logarithm problem (DLP) in prime-order sub-
groups of Z.

Elliptic curve cryptosystems (ECC) were invented by Neal Koblitz [40] and Victor Miller [57]
in 1985. They can be viewed as elliptic curve analogues of the older discrete logarithm (DL)
cryptosystems in which the subgroup of Zj is replaced by the group of points on an elliptic curve
over a finite field. The mathematical basis for the security of elliptic curve cryptosystems is the
computational intractability of the elliptic curve discrete logarithm problem (ECDLP).

Since the ECDLP appears to be significantly harder than the DLP, the strength-per-key-bit
is substantially greater in elliptic curve systems than in conventional discrete logarithm systems.
Thus, smaller parameters can be used in ECC than with DL systems but with equivalent levels of
security. The advantages that can be gained from smaller parameters include speed (faster computa-
tions) and smaller keys and certificates. These advantages are especially important in environments
where processing power, storage space, bandwidth, or power consumption is constrained.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the
DSA. ECDSA was first proposed in 1992 by Scott Vanstone [94] in response to NIST’s (National
Institute of Standards and Technology) request for public comments on their first proposal for DSS.
It was accepted in 1998 as an ISO (International Standards Organization) standard (ISO 14888-3),
accepted in 1999 as an ANSI (American National Standards Institute) standard (ANSI X9.62), and
accepted in 2000 as an IEEE (Institute of Electrical and Electronics Engineers) standard (IEEE
P1363) and a FIPS standard (FIPS 186-2). It is also under consideration for inclusion in some other
ISO standards. In this paper, we describe the ANSI X9.62 ECDSA, present rationale for some of
the design decisions, and discuss related security, implementation, and interoperability issues.

The remainder of this paper is organized as follows. In §2, we review digital signature schemes
and the DSA. A brief tutorial on finite fields and elliptic curves is provided in §3 and §4, respec-
tively. In §5, methods for domain parameter generation and validation are considered, while §6
discusses methods for key pair generation and public key validation. The ECDSA signature and
verification algorithms are presented in §7. The security of ECDSA is studied in §8. Finally, some

implementation and interoperability issues are considered in §9 and §10.

2 Digital Signature Schemes
2.1 Background

Digital signature schemes are designed to provide the digital counterpart to handwritten signatures
(and more). A digital signature is a number dependent on some secret known only to the signer (the
signer’s private key), and, additionally, on the contents of the message being signed. Signatures
must be verifiable — if a dispute arises as to whether an entity signed a document, an unbiased
third party should be able to resolve the matter equitably, without requiring access to the signer’s
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private key. Disputes may arise when a signer tries to repudiate a signature it did create, or when
a forger makes a fraudulent claim.

This paper is concerned with asymmetric digital signatures schemes with appendix. “Asym-
metric” means that each entity selects a key pair consisting of a private key and a related public
key. The entity maintains the secrecy of the private key which it uses for signing messages, and
makes authentic copies of its public key available to other entities which use it to verify signatures.
“Appendix” means that a cryptographic hash function is used to create a message digest of the
message, and the signing transformation is applied to the message digest rather than to the message
itself.

SECURITY. Ideally, a digital signature scheme should be existentially unforgeable under chosen-
message attack. This notion of security was introduced by Goldwasser, Micali and Rivest [25].
Informally, it asserts that an adversary who is able to obtain entity A’s signatures for any messages

of its choice is unable to successfully forge A’s signature on a single other message.

APPLICATIONS. Digital signature schemes can be used to provide the following basic cryptographic
services: data integrity (the assurance that data has not been altered by unauthorized or unknown
means), data origin authentication (the assurance that the source of data is as claimed), and non-
repudiation (the assurance that an entity cannot deny previous actions or commitments). Digital
signature schemes are commonly used as primitives in cryptographic protocols that provide other
services including entity authentication (e.g., FIPS 196 [64], ISO/IEC 9798-3 [31], and Blake-Wilson
and Menezes [9]), authenticated key transport (e.g., Blake-Wilson and Menezes [9], ANSI X9.63 [4],
and ISO/IEC 11770-3 [32]), and authenticated key agreement (e.g., ISO/IEC 11770-3 [32], Diffie,
van Qorschot and Wiener [16], and Bellare, Canetti and Krawczyk [8]).

CrassiFICATION. The digital signature schemes in use today can be classified according to the

hard underlying mathematical problem which provides the basis for their security:

1. Integer Factorization (IF) schemes, which base their security on the intractability of the inte-
ger factorization problem. Examples of these include the RSA [75] and Rabin [74] signature
schemes.

2. Discrete Logarithm (DL) schemes, which base their security on the intractability of the (or-
dinary) discrete logarithm problem in a finite field. Examples of these include the ElGamal
[18], Schnorr [79], DSA [60], and Nyberg-Rueppel [68, 69] signature schemes.

3. Elliptic Curve (EC) schemes, which base their security on the intractability of the elliptic
curve discrete logarithm problem.

2.2 The Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by the U.S. National Institute of Standards and Technology
(NIST) and was specified in a U.S. Government Federal Information Processing Standard (FIPS
186 [60]) called the Digital Signature Standard (DSS). The DSA can be viewed as a variant of the
ElGamal signature scheme [18]. Its security is based on the intractability of the discrete logarithm

problem in prime-order subgroups of Z;.
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DSA DoMAIN PARAMETER GENERATION. Domain parameters are generated for each entity in a
particular security domain. (See also the note below on secure generation of parameters.)

1. Select a 160-bit prime ¢ and a 1024-bit prime p with the property that ¢ | p — 1.

2. (Select a generator g of the unique cyclic group of order ¢ in Z;.)
Select an element A € Z; and compute g = R(P=1)/4 mod p. (Repeat until g # 1.)

3. Domain parameters are p, ¢ and g.

DSA Key PaIrR GENERATION. Each entity A in the domain with domain parameters (p, ¢, g) does
the following:

1. Select a random or pseudorandom integer z such that 1 <z < ¢ — 1.
2. Compute y = ¢* mod p.
3. A’s public key is y; A’s private key is z.

DSA S1IGNATURE GENERATION. To sign a message m, A does the following:

1. Select a random or pseudorandom integer k, 1 < k < g — 1.

2. Compute X = g* mod p and » = X mod ¢. If » = 0 then go to step 1.
3. Compute k! mod gq.

4. Compute e = SHA-1(m).

5. Compute s = k~{e + zr} mod q. If s = 0 then go to step 1.

6

. A’s signature for the message m is (r, s).

DSA Si1GNATURE VERIFICATION To verify A’s signature (7, s) on m, B obtains authentic copies of
A’s domain parameters (p, ¢, g) and public key y and does the following:

Verify that » and s are integers in the interval [1,¢ — 1].
Compute e = SHA-1(m).

Compute w = s~ mod gq.

Compute u; = ew mod ¢ and uy = rw mod gq.

Compute X = g“1y*2 mod p and v = X mod gq.

(o R O T 2 S

Accept the signature if and only if v = r.

SECURITY ANALYSIS. Since r and s are each integers less than ¢, DSA signatures are 320 bits in
size. The security of the DSA relies on two distinct but related discrete logarithm problems. One
is the discrete logarithm problem in Z; where the number field sieve algorithm (see Gordon [27]
and Schirokauer [78]) applies; this algorithm has a subexponential running time. More precisely,

the expected running time of the algorithm is

0 <exp <(c—|— o(1))(Inp)*/3(In 1np)2/3>> , (1)
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where ¢ &~ 1.923, and Inn denotes the natural logarithm function. If p is a 1024-bit prime, then
the expression (1) represents an infeasible amount of computation; thus the DSA using a 1024-bit
prime p is currently not vulnerable to this attack. The second discrete logarithm problem works to
the base g: given p, ¢, ¢, and y, find @ such that y = ¢* (mod p). For large p (e.g., 1024-bits), the
best algorithm known for this problem is Pollard’s rho method [73], and takes about

mq/2 (2)

steps. If ¢ ~ 21%°, then the expression (2) represents an infeasible amount of computation; thus the
DSA is not vulnerable to this attack. However, note that there are two primary security parameters
for DSA, the size of p and the size of ¢. Increasing one without a corresponding increase in the
other will not result in an effective increase in security. Furthermore, an advance in algorithms for

either one of the two discrete logarithm problems could weaken DSA.

SECURE GENERATION OF PARAMETERS. In response to some criticisms received on the first draft
(see Rueppel et al. [76] and Smid and Branstad [87]), FIPS 186 specified a method for generating
primes p and ¢ “verifiably at random”. This feature prevents an entity (e.g., a central authority
generating domain parameters to be shared by a network of entities) from intentionally constructing
“weak” primes p and g for which the discrete logarithm problem is relatively easy. For further
discussion of this issue, see Gordon [26]. FIPS 186 also specifies two methods, based on DES
and SHA-1, for pseudorandomly generating private keys # and per-message secrets k. FIPS 186
mandates the use of these algorithms, or any other FIPS-approved security methods.

3 Finite Fields

We provide a brief introduction to finite fields. For further information, see Chapter 3 of Koblitz
[43], or the books by McEliece [52] and Lidl and Niederreitter [50].

A finite field consists of a finite set of elements F' together with two binary operations on F,
called addition and multiplication, that satisfy certain arithmetic properties. The order of a finite
field is the number of elements in the field. There exists a finite field of order ¢ if and only if ¢ is
a prime power. If ¢ is a prime power, then there is essentially only one finite field of order ¢; this
field is denoted by F,. There are, however, many ways of representing the elements of F,. Some
representations may lead to more efficient implementations of the field arithmetic in hardware or
in software.

If ¢ = p™ where p is a prime and m is a positive integer, then p is called the characteristic
of F, and m is called the eztension degree of F,. Most standards which specify the elliptic curve
cryptographic techniques restrict the order of the underlying finite field to be an odd prime (¢ = p)
or a power of 2 (¢ = 2™). In §3.1, we describe the elements and the operations of the finite field
F,. In §3.2, elements and the operations of the finite field Fym are described, together with two
methods for representing the field elements: polynomial basis representations and normal basis

representations.
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3.1 The Finite Field I,
Let p be a prime number. The finite field F,,, called a prime field, is comprised of the set of integers

{0a1a2a"'ap_1}

with the following arithmetic operations:

e AppITION: If a,b € F,,, then a + b = r, where 7 is the remainder when a 4 b is divided by p
and 0 <7 < p—1. This is known as addition modulo p.

e MULTIPLICATION: If a,b € F,,, then a - b = s, where s is the remainder when a - b is divided
by p and 0 < s < p — 1. This is known as multiplication modulo p.

e INVERSION: If a is a non-zero element in F,, the inverse of a modulo p, denoted a™!, is the

unique integer ¢ € F,, for which a-c = 1.

Example 1 (The finite field Fa3) The elements of Fo3 are {0,1,2,...,22}. Examples of the arith-
metic operations in o3 are:

e 12+20=0.
e 8.-9=23.
e 871 =3,

3.2 The Finite Field F,n»

The field Fom, called a characteristic two finite field or a binary finite field, can be viewed as a
vector space of dimension m over the field F» which consists of the two elements 0 and 1. That is,
there exist m elements ag, oy, ..., a1 in Fom such that each element o € Fom can be uniquely

written in the form:
a = apag + ajay + -+ @y 10,1, where a; € {0,1}.

Such a set {ag, a1,...,q,_1} is called a basis of Fam over Fy. Given such a basis, a field element
a can be represented as the bit string (apa; .. .am,—1). Addition of field elements is performed by
bitwise XOR-ing the vector representations. The multiplication rule depends on the basis selected.

There are many different bases of Fom over F5. Some bases lead to more efficient software or
hardware implementations of the arithmetic in Fym than other bases. ANSI X9.62 permits two

kinds of bases: polynomial bases (discussed in §3.2.1) and normal bases (discussed in §3.2.2).

3.2.1 Polynomial Basis Representations
Let f(z2) = 2™+ fo12™ * + -+ -+ fozx? + fiz + fo (where f; € {0,1} fori = 0,1,...,m—1) be an
irreducible polynomial of degree m over Fy. That is, f(z) cannot be factored as a product of two

polynomials over Fs, each of degree less than m. Each such polynomial f(z) defines a polynomial
basis representation of Fam, which is described next. f(z) is called the reduction polynomial.
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FiELD ELEMENTS. The finite field Fam is comprised of all polynomials over Fs of degree less than
m:

Fom = {am_12™ 1+ ap_oe™ 2 + - -+ a1z +ao : a; € {0,1}}.

The field element a,,_12™ ! 4 a,,_22™ 2 + --- 4+ a1z + ap is usually denoted by the bit string

(@m—1@m—s - ..arag) of length m, so that
]F2m = {(am_lam_2 .. .alao) a; € {0, ]_}}

Thus the elements of Fom can be represented by the set of all binary strings of length m. The
multiplicative identity element (1) is represented by the bit string (00...01), while the additive
identity element (0) is represented by the bit string of all 0’s.

FieLp OPERATIONS. The following arithmetic operations are defined on the elements of Fom when
using a polynomial basis representation with reduction polynomial f(z):

e AppITION: If @ = (@m—1Gm—2...a1a0) and b = (by_1bm—2...b1bo) are elements of Fam,
then a + b = ¢ = (¢m-1Cm—2 ... C1¢0), Where ¢; = (a; + b;) mod 2. That is, field addition is
performed bitwise.

e MULTIPLICATION: If @ = (am-1@m—2...a100) and b = (by—1bm—2...b1bo) are elements of
Fom, then @+ b = » = (P,_1Ppm_2 ...7170), where the polynomial r,, 2™ + r,, 2™ 2 +
-« -4 Pry& + 7o is the remainder when the polynomial

(am—liﬂm_l + Apne™ 2 agz + ag) - (bm—lil'm_l R Y N Y bo)

is divided by f(z) over Fs.
e INVERSION: If @ is a non-zero element in Fym, the inverse of a, denoted a™!, is the unique

element ¢ € Fym for which a -¢ = 1.

Example 2 (A polynomial basis representation of the finite field Fy1) Let f(z) = 2*+z + 1 be the
reduction polynomial. Then the 16 elements of F,4 are:

0 (0000) 1 (0001) z (0010) z+1 (0011)

z?  (0100) z?2+1 (0101) z?+z (0110) 2?+z+1 (0111)

z®  (1000) z3+1 (1001) 3 +z (1010) 2 +z+1 (1011)

3 +2? (1100) | 2® + 22+ 1 (1101) | 2>+ 2*+2 (1110) [ 2® +22+2+1 (1111)

Examples of the arithmetic operations in Fy4 are:
e (1101) 4 (1001) = (0100).
e (1101)-(1001) = (1111) since (2® + 2?2 +1) - (z®+1) = 2+ 2° + 2 + L and (2® + 2° + 22 +
1) mod(a:4—|—a:—|—1)::133—|—az2—|—a:—|—1.
e (1101)~! = (0100).
The element a = z = (0010) is a generator of F, since its order is 15 as the following calculations

show:
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al = (0010) o? =(0100) o3 = (1000) a*=(0011) o = (0110)
a® = (1100) o7 = (1011) o8 = (0101) @ =(1010) oY = (0111)
all = (1110) o2 = (1111) o3 = (1101) o = (1001) o' = (0001).

SELECTING A REDUCTION POLYNOMIAL. A trinomial over Fy is a polynomial of the form 2™ +z* +
1, where 1 < k < m—1. A pentanomial over Fy is a polynomial of the form z™ 4 z*3 4 2*2 4 2F1 -1,
where 1 < k1 < ks < k3 < m—1. ANSI X9.62 specifies the following rules for selecting the reduction

polynomial for representing the elements of Fom.

1. If there exists an irreducible trinomial of degree m over Fs, then the reduction polynomial
f(z) must be an irreducible trinomial of degree m over F,. To maximize the chances for
interoperability, ANSI X9.62 recommends that the trinomial used should be 2™ + 2* + 1 for
the smallest possible k.

2. If there does not exist an irreducible trinomial of degree m over F,, then the reduction
polynomial f(z) must be an irreducible pentanomial of degree m over Fy. To maximize the
chances for interoperability, ANSI X9.62 recommends that the pentanomial used should be
2™ 2k gk 4 2k 11 chosen according to the following criteria:! (1) k3 is as small as possible;
(ii) for this particular value of k3, ks is a small as possible; and (iii) for these particular values

of k3 and ko, k1 is as small as possible.

3.2.2 Normal Basis Representations

NORMAL BASES. A normal basis of Fam over Fs is a basis of the form {3, 32, ﬁ22, . ,ﬁzm_l}, where
B € Fam. Such a basis always exists. Any element a € Fom can be written as a = E?;Bl aiﬁzi,
where a; € {0,1}. Normal basis representations have the computational advantage that squaring an
element can be done very efficiently (see Field Operations below). Multiplying distinct elements,
on the other hand, can be cumbersome in general. For this reason, ANSI X9.62 specifies that

Gaussian normal bases be used, for which multiplication is both simpler and more efficient.

GAUSSIAN NORMAL Basgs. The type of a GNB is a positive integer measuring the complexity of
the multiplication operation with respect to that basis. Generally speaking the smaller the type,
the more efficient the multiplication. For a given m and 7', the field Fsm can have at most one
GNB of type T. Thus it is proper to speak of the type T GNB of Fam. See Mullin et al. [59] and
Ash, Blake and Vanstone [5] for further information on GNBs.

EXISTENCE OF GAUSSIAN NORMAL Bases. A Gaussian normal basis (GNB) exists whenever m
is not divisible by 8. Let m be a positive integer not divisible by 8, and let T’ be a positive integer.
Then a type T' GNB for Fom exists if and only if p = T'm + 1 is prime and ged(T'm/k,m) = 1,
where k is the multiplicative order of 2 modulo p.

! Actually, ANSI X9.62 recommends the following criteria for selecting the pentanomial: (i) ki is as small as
possible; (ii) for this particular value of k1, k2 is a small as possible; and (iii) for these particular values of k; and ks,
k3 is as small as possible. However, the ANSI X9F1 committee agreed in April 1999 to change this recommendation
in a forthcoming revision of ANSI X9.62 to the one given above in order to be consistent with the IEEE P1363 and
FIPS 186-2 recommendations.
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FieLp ELEMENTS. If {8, 32, B2 ... ,ﬂ2m_l} is a normal basis of Fym over Fy, then the field element
a= E?;Bl a;3% is represented by the binary string (aga; ...a,,_1) of length m, so that

FQm = {((10(11 .. .am_l) Da; € {0, 1}}

The multiplicative identity element (1) is represented by the bit string of all 1’s, while the additive
identity element (0) is represented by the bit string of all 0’s.

FieLp OPERATIONS. The following arithmetic operations are defined on the elements of Fom when

using a GNB of type T

e AppiTioN: If @ = (apay...a@m—2am—1) and b = (bob;y ...by—2b,—1) are elements of Fam,
then a + b = ¢ = (coc1 ... Cm—2Cm—1), Where ¢; = (a; + b;) mod 2. That is, field addition is

performed bitwise.

e SQUARING: Let a = (apa; . ..am—2a;m—1) € Fam. Since squaring is a linear operation in Fom,

m—1 2 m—1 m—1
7 i+1 7
a’ = ( E aiﬁ2 ) = E aiﬁ2 = E ai—152 = (am—laoal .- -am—2)a
=0

with indices reduced modulo m. Hence squaring a field element can be accomplished by a
simple rotation of the vector representation.
e MULTIPLICATION: Let p = Tm + 1 and let u € F, be an element of order T. Define the
sequence F(1), F(2),...,F(p—1) by
F(Qiujmodp):i for0<i<m-1,0<35<T-1.

If a = (agay . ..am—2am—1) and b = (bgby ...by_2b,,,—1) are elements of Fom, then a-b=c =

(coc1-..Cm—2Cm—1), Where

Eij QF (k1) +1OF (p—k) 41 if T is even,
€= Ezlz/f(ak-l-l;lbm/‘z?-l-k-l—l—l + am/2—|—k—|—l—1bk—|—l—1)
+ 21 AF(kt1)+1OF (p—k) 11 if T is odd,

for each [, 0 <1 < m — 1, where indices are reduced modulo m.

e INVERSION: If @ is a non-zero element in Fym, the inverse of a in Fom, denoted a1, is the

unique element ¢ € Fom for which a-c=1.

Example 3 (A Gaussian normal basis representation of the finite field Fos) For the type T' = 3
GNB for F,4, let u =9 € Fy3 be an element of order 3. The sequence of F()’s is:

F(2)=1 F(3)
F(8)=3 F(9)

0 0 F(5)=1 F(6)=1
3 0 F(11)=3 F(12)=2.
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The formulas for the product terms ¢; are:

co = ap(br + b2+ b3) + a1(bo + b2) + a2(bo + b1) + as(by + b3)
c1 = ai(be+ b3+ bo) + az(b1 + b3) + as(by + bs) + ao(by + bo)
Co as(bs + bo + b1) + as(bs + bo) + ag(bz + bs) + a1 (b2 + b1)
cs = ag(bo+ b1+ b2) + ao(bs + b1) + a1(bs + bo) + az(bs + bs)

For example, if a = (1000) and b = (1101), then ¢ = a - b = (0010).

SELECTING A GAUSSIAN NORMAL Basis. ANSI X9.62 specifies the following rules for selecting a
GNB for representing the elements of Fom (when m is not divisible by 8).

1. If there exists a type 2 GNB of Fam, then this basis must be used.

2. If there does not exist a type 2 GNB of Fym, but there does exist a type 1 GNB, then the
type 1 GNB must be used.

3. If neither a type 1 nor a type 2 GNB of Fom exists, then the GNB of smallest type must be
used.

The selection of type 2 GNBs over type 1 GNBs was somewhat arbitrary — both types of GNBs
admit efficient implementation of field arithmetic. This is not a practical concern since finite fields
which have both type 1 and type 2 GNBs are relatively scarce — the only such fields Fom with m
between 160 and 600 are Fy210 and Fys7s. Neither of these two fields are among those recommended

by NIST (see §10.2).

4 Elliptic Curves Over Finite Fields

We give a quick introduction to the theory of elliptic curves. Chapter 6 of Koblitz’s book [43]
provides an introduction to elliptic curves and elliptic curve systems. For a more detailed account,
consult Menezes’ book [54].

4.1 Elliptic Curves Over [,
Let p > 3 be an odd prime. An elliptic curve E over F, is defined by an equation of the form

v =234+ az+0b, (3)

where a,b € F,,, and 4a® + 276> £ 0 (mod p). The set E(F,) consists of all points (z,y), z € F,,
€ F,, which satisfy the defining equation (3), together with a special point O called the point at
mfinity.

Example 4 (elliptic curve over Fa3) Let p = 23 and consider the elliptic curve F : y? = 2+ 2 +4
defined over Fa3. (In the notation of equation (3), we have a = 1 and b = 4.) Note that 4a®+270? =
44432 = 436 = 22 (mod 23), so E is indeed an elliptic curve. The points in E(Fs3) are O and the

following:
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(0,2) (0,21) (1,11) (1,12) (4,7) (4,16) (7,3)  (7,20) (8,8) (8,15)
(9,11) (9,12) (10,5) (10,18) (11,9) (11,14) (13,11) (13,12) (14,5) (14,18)
(15,6) (15,17) (17,9) (17,14) (18,9) (18,14) (22,5) (22,19).

AppITION FORMULA. There is a rule, called the chord-and-tangent rule, for adding two points on
an elliptic curve E(FF,) to give a third elliptic curve point. Together with this addition operation,
the set of points E(F,) forms a group with O serving as its identity. It is this group that is used
in the construction of elliptic curve cryptosystems.

The addition rule is best explained geometrically. Let P = (21,¥1) and Q = (22,y2) be two
distinct points on an elliptic curve E. Then the sum of P and @, denoted R = (z3,ys3), is defined
as follows. First draw the line through P and @Q); this line intersects the elliptic curve in a third
point. Then R is the reflection of this point in the z-axis. This is depicted in Figure 1. The elliptic
curve in the figure consists of two parts, the ellipse-like figure and the infinite curve.

Q = (z2,2) -t~

Figure 1: Geometric description of the addition of two distinct elliptic curve points: P + Q = R.

If P = (21,y1), then the double of P, denoted R = (z3,ys), is defined as follows. First draw
the tangent line to the elliptic curve at P. This line intersects the elliptic curve in a second point.
Then R is the reflection of this point in the z-axis. This is depicted in Figure 2.

The following algebraic formulae for the sum of two points and the double of a point can now

be derived from the geometric description.
1. P+O=0+P=Pforall Pc E(F,).

2. If P = (z,y) € E(F,), then (2,y) + (#, —y) = O. (The point (z, —y) is denoted by —P, and
is called the negative of P; observe that —P is indeed a point on the curve.)

3. (Point addition) Let P = (z1,y1) € E(F,) and Q = (22,y2) € E(F,), where P # +Q. Then

P+ Q = (133,:'/3), where
2
_(w—w)
r3 = | ——m — L1 — Ly
Lo — 1
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P = (:Bl,yl)/,,/’//’

0

R = ($3,y3)

Figure 2: Geometric description of the doubling of an elliptic curve point: P+ P = R.

and

Y2— U
Ys = (7) (21 — 23) — 11.

Lo — 21

4. (Point doubling) Let P = (z1,y1) € E(F,), where P # —P. Then 2P = (23, y3), where

32?2 ?
233:( 231—|—(1) —2231

and

322 +a
y3:( . )(131—133)—?/1-

Observe that the addition of two elliptic curve points in E(F,) requires a few arithmetic oper-
ations (addition, subtraction, multiplication, and inversion) in the underlying field F,,.

Example 5 (elliptic curve addition) Consider the elliptic curve defined in Example 4.

1. Let P =(4,7) and Q = (13,11). Then P + Q = (z3, y3) is computed as follows:

11 -7\2
— ~4-13=32-4-13=-8=1 d2
3 (13_4) 3=3 3 8 =15 (mod 23),

and
y3=3(4—15)—-7=—-40=6 (mod 23).

Hence P + Q = (15, 6).
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2. Let P =(4,7). Then 2P = P + P = (23, ys) is computed as follows:

2 2
23 = (%) —8=152-8=217=10 (mod 23),

and
ys=15(4—10) — 7= —97 =18 (mod 23).
Hence 2P = (10, 18).

4.2 Elliptic Curves Over Fjn

An elliptic curve E over Fom is defined by an equation of the form
yz—l—azy:a:?’—l—aa:z—l—b, (4)

where a,b € Fam, and b # 0. The set E(Fam) consists of all points (z,y), # € Fam, y € Fam, which
satisfy the defining equation (4), together with a special point O called the point at infinity.

Example 6 (elliptic curve over Fyq) Consider Fos as represented by the irreducible trinomial
f(z) = ei4e+1 (see Example 2 of Section 3). Consider the elliptic curve E : y 4y = 22 +atz?+1
over Fys. (In the notation of equation (4), we have a = o* and b = 1.) Note that b # 0, so E is
indeed an elliptic curve. The points in E(F,4) are O and the following:

(0,1) (1, a%) (1, al?) (a3,0®) (a3,a!?) (o a3) (o all) (af,a®)
(a%,a1%) (a2, (o a'®) (al%a) (al%a®) (al%,0) (a'? al?).

AppiTiON FORMULA. As with elliptic curves over I, there is a chord-and-tangent rule for adding
points on an elliptic curve E(Fym) to give a third elliptic curve point. Together with this addition
operation, the set of points E(Faym) forms a group with O serving as its identity.

The algebraic formula for the sum of two points and the double of a point are the following.
1. P+O=0+ P=Pforall Pc E(Fm).

2. If P=(2z,y) € E(Fam), then (z,y)+ (2,2 +y) = O. (The point (z, z + y) is denoted by —P,
and is called the negative of P; observe that —P is indeed a point on the curve.)

3. (Point addition) Let P = (21,y1) € E(Fem) and Q = (22,y2) € E(Fam), where P # +Q.
Then P + Q = (23,ys), where

2
$3:(y1+y2) +y1+y2-|-l'1—|-l'2—|-a
z1+ 2 z1+ 22

and

(Tt
Y3 = (71:14-;1:2) (21 + 23) + 23+ y1.
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4. (Point doubling) Let P = (21,y1) € E(Fsm), where P # —P. Then 2P = (23, y3), where
b

2
zz3=21+ —5
T1

and

yszm%—l-(:vﬁ-z-l) 23+ z3.
1

Example 7 (elliptic curve addition) Consider the elliptic curve defined in Example 6.
1. Let P = (a® a®) and Q = (a®,a!®). Then P + Q = (z3,y3) is computed as follows:

2
a8 + a13 a8 + a13 3
L3 =

6 3 4 ®\?  a 6 3 4
+a’+a”+at = ; —I—E—I—a +a’+a =1

a6_|_a3 a6_|_a3

and

8 13 3
y3:(7a Ta )(a6—|—1)—|—1—|—a8:(a—z)(a13)—|—a2:a13.
«a

ab + o?
Hence P+ Q = (1, a!?).
2. Let P = (a® a®). Then 2P = P + P = (23, y3) is computed as follows:

10

— a2t P —a
and

ys = (a%)? + (aG_I_ Z_Z) al0 4 ol0 = 12 1 13 4 Q10 — o8,
Hence 2P = (a!?, a®).

4.3 Basic Facts

GRrROUP ORDER. Let E be an elliptic curve over a finite field F,. Hasse’s theorem states that the
number of points on an elliptic curve (including the point at infinity) is #E(F,) = ¢+ 1 — t where
|t| < 2,/q; #E(F,) is called the order of E and ¢ is called the trace of E. In other words, the order
of an elliptic curve E(F,) is roughly equal to the size ¢ of the underlying field.

GRrouUP STRUCTURE. E(F,;) is an abelian group of rank 1 or 2. That is, E(F,) is isomorphic
to Zy, X ZLy,, where ng divides ny, for unique positive integers n; and ns. Here, Z,, denotes
the cyclic group of order n. Moreover, ny divides ¢ — 1. If ny = 1, then E(F,) is said to be
cyclic. In this case E(F,) is isomorphic to Z,,, and there exists a point P € E(F;) such that
E(Fy) = {kP : 0 <k <ny — 1}; such a point is called a generator of E(F,).

Example 8 (cyclic elliptic curve) Consider the elliptic curve E(Fs3) defined in Example 4. Since
#E(Fa3) = 29, which is prime, E(Fy3) is cyclic and any point other than O is a generator of E(Fa3).
For example, P = (0, 2) is a generator as the following shows:
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1P = (0,2) 2P =(13,12) 3P =(11,9) 4P=(1,12) 5P =(7,20)
6P=(9,11) 7P =(15,6) 8P =(14,5) 9P =(4,7) 10P = (22,5)
11P=(10,5) 12P=(17,9) 13P=(8,15) 14P=(18,9) 15P = (18,14)
16P =(8,8)  17P = (17,14) 18P =(10,18) 19P = (22,18) 20P = (4,16)
21P = (14,18) 22P = (15,17) 23P =(9,12) 24P =(7,3) 25P = (1,11)
26P = (11,14) 27P = (13,11) 28P =(0,21) 29P = 0.

= (
= ( = ( = (
= ( = (
5 ECDSA Domain Parameters

The domain parameters for ECDSA consist of a suitably chosen elliptic curve E defined over a
finite field F, of characteristic p, and a base point G € E(F,). Domain parameters may either be
shared by a group of entities, or specific to a single user.

85.1 describes the requirements for what constitutes “suitable” domain parameters. In §5.2, a
procedure is specified for generating elliptic curves verifiably at random. §5.3 outlines a method
for generating domain parameters, while §5.4 presents a procedure for verifying that a given set of

domain parameters meets all requirements.

5.1 Domain Parameters

In order to facilitate interoperability, some restrictions are placed on the underlying field size ¢ and
the representation used for the elements of F,. Moreover, to avoid some specific known attacks,
restrictions are placed on the elliptic curve and the order of the base point.

FIELD REQUIREMENTS. The order of the underlying finite field is either ¢ = p, an odd prime, or
g = 2™, a power of 2. In the case ¢ = p, the underlying finite field is F,,, the integers modulo p. In
the case ¢ = 2™, the underlying finite field is Fom whose elements are represented with respect to

a polynomial or a normal basis as described in §3.

EvvipTic CURVE REQUIREMENTS. In order to avoid Pollard’s rho [73] and the Pohlig-Hellman [71]
attacks on the elliptic curve discrete logarithm problem (see §8.1), it is necessary that the number
of F,-rational points on E be divisible by a sufficiently large prime n. ANSI X9.62 mandates that
n > 2190, Having fixed an underlying field F,, n should be selected to be as large as possible, i.e.,
one should have n & ¢, so #E(F,) is almost prime. In the remainder of this paper, we shall assume
that n > 2'% and that n > 4,/g. The co-factor is defined to be h = #E(F,)/n.

Some further precautions should be exercised when selecting the elliptic curve. To avoid the
reduction algorithms of Menezes, Okamoto and Vanstone [55] and Frey and Riick [21], the curve
should be non-supersingular (i.e., p should not divide (¢ + 1 — #E(F,;))). More generally, one
should verify that n does not divide ¢® — 1 for all 1 < k < C, where C is large enough so that
it is computationally infeasible to find discrete logarithms in F ¢ (C' = 20 suffices in practice [3]).
Finally, to avoid the attack of Semaev [82], Smart [86], and Satoh and Araki [77] on F,-anomalous
curves, the curve should not be F -anomalous (i.e., #E(F,) # ¢).

A prudent way to guard against these attacks, and similar attacks against special classes of
curves that may be discovered in the future, is to select the elliptic curve E at random subject to

the condition that #FE(F,) is divisible by a large prime — the probability that a random curve
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succumbs to these special-purpose attacks is negligible. A curve can be selected verifiably at random
by choosing the coefficients of the defining elliptic curve equation as the outputs of a one-way
function such as SHA-1 according to some pre-specified procedure. A procedure for accomplishing
this, similar in spirit to the method given in FIPS 186 [60] for selecting DSA primes verifiably at
random, is described in §5.2.

SuMMARY. To summarize, domain parameters are comprised of:
1. a field size ¢, where either ¢ = p, an odd prime, or ¢ = 2™;
2. an indication FR (field representation) of the representation used for the elements of Fy;

3. (optional) a bit string seedE of length at least 160 bits, if the elliptic curve was generated in
accordance with the method described in §5.2;

4. two field elements a and b in F, which define the equation of the elliptic curve E over F, (i.e.,
y> = 2% + az + b in the case p > 3, and y? + zy = 2> + az? + b in the case p = 2);

5. two field elements z¢ and yg in F, which define a finite point G = (2, yg) of prime order in
E(F,);

6. the order n of the point G, with n > 20 and n > 4,/q; and

7. the cofactor h = #E(F,)/n.

5.2 Generating an Elliptic Curve Verifiably at Random

This subsection describes the method that is used for generating an elliptic curve verifiably at
random. The defining parameters of the elliptic curve are defined to be outputs of the one-way
hash function SHA-1 (as specified in FIPS 180-1 [63]). The input seed to SHA-1 then serves as
proof (under the assumption that SHA-1 cannot be inverted) that the elliptic curve was indeed
generated at random. This provides some assurance to the user of the elliptic curve that the entity
who generated the elliptic curve did not intentionally construct a “weak” curve which it could
subsequently exploit to recover the user’s private keys. Use of this generation method can also help
mitigate concerns regarding the possible future discovery of new and rare classes of weak elliptic
curves, as such rare curves would essentially never be generated.

5.2.1 The Case g =7p

The following notation is used: ¢ = [log, p], s = |(t — 1)/160] and v =¢ — 160 - s.
ALGORITHM 1: GENERATING A RaANDoM ErripTic CURVE OVER F,,.

INpUT: A field size p, where p is an odd prime.

OuTpPUT: A bit string seedE of length at least 160 bits and field elements a,b € F, which define
an elliptic curve E over F,,.

1. Choose an arbitrary bit string seedE of length g > 160 bits.

2. Compute H = SHA-1(seedE), and let ¢y denote the bit string of length v bits obtained by
taking the v rightmost bits of H.
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3. Let Wy denote the bit string of length v bits obtained by setting the leftmost bit of ¢y to 0.
(This ensures that r < p.)

4. Let z be the integer whose binary expansion is given by the g-bit string seedE.

5. For 7 from 1 to s do:

4.1. Let s; be the g-bit string which is the binary expansion of the integer (z + ¢) mod 29.
4.2. Compute W; = SHA-1(s;).

6. Let W be the bit string obtained by the concatenation of Wy, Wy, ..., W, as follows: W =
Wol[Wall - || W

7. Let r be the integer whose binary expansion is given by W.
8. If r =0 or if 4r + 27 = 0 (mod p) then go to step 1.
9. Choose arbitrary integers a,b € F,, not both 0, such that r - 52 = ¢® mod p. (For example,

one may take a =r and b =r.)
10. The elliptic curve chosen over F), is E : y? =23+ az +b.
11. Output(seedE, a, b).

IsomorpPHISM CLASSES OF ELLIPTIC CURVES OVER F,,. Two elliptic curves E; : y? = z234aj2+b,
and E» : y? = 2%+ ayz + by defined over F, are isomorphic over F,, if and only if there exists u € F,,
u # 0, such that a; = u*as and b; = u®b,. (Isomorphic elliptic curves are essentially the same. In
particular, if E; is isomorphic to E3, then the groups F1(F,) and E(F,) are isomorphic as abelian

groups.) Observe that if F; and FE, are isomorphic and b; # 0 (so b2 # 0), then of _ The

CEC

singular elliptic curves, i.e., the curves E : y?> = 2® + az + b for which 4a® + 2762 = 0 (mod p),

a3

are precisely those which either have ¢ = 0 and b = 0, or {7 = —24—7. IfrefF, r#0,r# —24—7,
then there are precisely 2 isomorphism classes of curves F : y? = 2%+ az + b with ‘Z—s =r (mod p).
Hence, there are essentially only 2 choices for (a,b) in step 9 of Algorithm 1. The conditions » # 0
and r # —% imposed in step 8 ensure the exclusion of singular elliptic curves. Finally, we mention
that this method of generating curves will never produce the elliptic curves with ¢ = 0, b # 0,
nor the elliptic curves with a # 0, b = 0. This is not a concern because such curves constitute
a negligible fraction of all elliptic curves, and therefore are unlikely to ever be generated by any

method which selects an elliptic curve uniformly at random.

THE TwisT oF AN ErnipTic CURVE OVER F,. The non-isomorphic elliptic curves E; : y? =
23 + az + b and F5 : y? = 2® + ac?z? + bc®, where ¢ € F, is a quadratic non-residue modulo p, are
said to be twists of each other. Note that both these curves have the same r value. Their orders
are related by the equation #E;(F,) +#E5(F,) = 2p+2. Thus, if one is able to compute #E;(F,),
then one can easily deduce #E5(F,).

ALGORITHM 2: VERIFYING THAT AN ELLIPTIC CURVE WAS RANDOMLY GENERATED OVER F,.
INPUT: A field size p (a prime), a bit string seedE of length ¢ > 160 bits, and field elements
a,b € F, which define an elliptic curve E : y*> = z* + az + b over F,,.

OuTPUT: Acceptance or rejection that £ was randomly generated using Algorithm 1.
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. Compute H = SHA-1(seedE), and let ¢y denote the bit string of length v bits obtained by

taking the v rightmost bits of H.

. Let Wy denote the bit string of length v bits obtained by setting the leftmost bit of ¢y to 0.
. Let z be the integer whose binary expansion is given by the g-bit string seedE.

. For 7 from 1 to s do:

4.1. Let s; be the g-bit string which is the binary expansion of the integer (z + ¢) mod 29.
4.2. Compute W; = SHA-1(s;).

. Let W be the bit string obtained by the concatenation of Wy, Wy,..., W, as follows: W’/ =

Wo [[Wil[ --- | W,.

. Let r’ be the integer whose binary expansion is given by W'.

. If 7 - 4% = @® (mod p) then accept; otherwise reject.

5.2.2 The Case ¢ =2™
The following notation is used: s = |(m — 1)/160| and v = m — 160 - 5.

ALGgoriTHM 3: GENERATING A RANDOM ELLIPTIC CURVE OVER Faym.

InpuT: A field size ¢ = 2™.

OuTpPUT: A bit string seedE of length at least 160 bits and field elements a,b € Fom which define
an elliptic curve E over Fom.

1.
2.

© o N O

Choose an arbitrary bit string seedE of length g > 160 bits.

Compute H = SHA-1(seedE), and let by denote the bit string of length v bits obtained by
taking the v rightmost bits of H.

. Let z be the integer whose binary expansion is given by the g-bit string seedE.

For i from 1 to s do:

4.1. Let s; be the g-bit string which is the binary expansion of the integer (z + ¢) mod 29.
4.2. Compute b; = SHA-1(s;).

Let b be the field element obtained by the concatenation of bg,bq,...,b, as follows: b =
bo [l -~ | bs-

If 5 =0 then go to step 1.

Let a be an arbitrary element of Fom.

The elliptic curve chosen over Fom is E : y2 +xy = 23 + az? +b.

Output(seedE, a, b).

IsomorPHISM CLASSES OF ELLIPTIC CURVES OVER Fym. Two elliptic curves E; : y? 4+ zy =
2>+ a12? + by and Ey : y? + zy = 2> + asz? + by defined over Fom are isomorphic over Fom if
and only if b; = b2 and Tr(a;) = Tr(as), where Tr is the trace function Tr : Fom — Fy defined
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by Tr(a) = a + a? + a? 4+ 4 a2t (Isomorphic elliptic curves are essentially the same. In
particular, if E; is isomorphic to Es, then the groups Fi(Fsm) and Ey(Fam) are isomorphic as
abelian groups.) It follows that a set of representatives of the isomorphism classes of elliptic curves
over Fom is {y?> + 2y = 23+ az? +b| b € Fam, b #£ 0, a € {0,7}}, where v € Fym is a fixed element
with Tr(y) = 1 (if m is odd, we can take v = 1). Hence, having selected b, there are essentially
only 2 choices for a in step 7 of Algorithm 3.

THE TwisT oF AN ELLIPTIC CURVE OVER Fym. The non-isomorphic elliptic curves E; : y* +zy =
2> +aiz? +band Ey: y? + 2y = 2° + asz? + b where Tr(a;) # Tr(az2) are said to be twists of each
other. Their orders are related by the equation # E;(Fam) + #E5(Fam) = 2™! + 2. Thus, if one is
able to compute #FE;(Fam), then one can easily deduce #FE5(Fam). The order of an elliptic curve
over Fym is always even. Furthermore, #E;(Fym) = 0 (mod 4) if Tr(a;) = 0, and #E1(Fam) = 2
(mod 4) if Tr(aq) = 1.

ALGORITHM 4: VERIFYING THAT AN ELLIPTIC CURVE WAS RANDOMLY GENERATED OVER Fam.
INpPUT: A field size ¢ = 2™, a bit string seedE of length g > 160 bits, and field elements a, b € Fom
which define an elliptic curve F : y2 +xy = 22 4+ az? + b over Faym.

OuTPUT: Acceptance or rejection that £ was randomly generated using Algorithm 3.

1. Compute H = SHA-1(seedE), and let by denote the bit string of length v bits obtained by
taking the v rightmost bits of H.

2. Let z be the integer whose binary expansion is given by the g-bit string seedE.

3. For i from 1 to s do:
4.1. Let s; be the g-bit string which is the binary expansion of the integer (z + ¢) mod 29.
4.2. Compute b; = SHA-1(s;).

4. Let b be the field element obtained by the concatenation of bg,by,...,b, as follows: b =
bo [l -~ | bs-

5. If b = b’ then accept; otherwise reject.

5.3 Domain Parameter Generation

The following is one way to generate cryptographically secure domain parameters:

1. Select coefficients a and b from F, verifiably at random using Algorithm 1 or Algorithm 3.
Let E be the curve y* = 23 + az + b in the case ¢ = p, and y? + 2y = 23 + az? + b in the case
qg=2".

2. Compute N = #E(F,).

3. Verify that N is divisible by a large prime n (n > 21°° and n > 4,/q). If not, then go to
step 1.

4. Verify that n does not divide ¢* — 1 for each k, 1 < k < 20. If not, then go to step 1.
5. Verify that n £ ¢. If not, then go to step 1.
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6. Select an arbitrary point G’ € E(F,) and set G = (N/n)G’. Repeat until G # O.

PoINT CoUNTING. In 1985 Schoof [80] presented a polynomial-time algorithm for computing
#E(F,), the number of points on an elliptic curve over F, in the case when ¢ is odd; the algorithm
was later extended to the case of ¢ = 2™ by Koblitz [41]. Schoof’s algorithm is rather inefficient in
practice for the values of ¢ of practical interest (i.e. ¢ > 2'%°). In the last few years a lot of work
has been done on improving and refining Schoof’s algorithm; for example, see Lercier and Morain
[49] and Lercier [47]. With these improvements, cryptographically suitable elliptic curves over fields

2200

whose orders are as large as can be randomly generated in a few hours on a workstation (see

Lercier [48] and Izu et al. [35]).

THE CoMPLEX MULTIPLICATION (CM) METHOD. Another method for generating cryptographi-
cally suitable elliptic curves is the CM method. Over F, the CM method is also called the Atkin-
Morain method [58]; over Fam it is also called the Lay-Zimmer method [46]. A detailed description
of the CM method can be found in IEEE P1363 [30].

Let E be an elliptic curve over F, of order N. Let Z = 4¢q — (¢ + 1 — N)? and write Z = DV?
where D is a squarefree integer. Then F is said to have complez multiplication by D. If one knows
D for a given curve, then one can efficiently compute the order of the curve.

The CM method first finds a D for which there exists an elliptic curve E over F, with complex
multiplication by D and having nearly prime order N = nh (where n is prime), and furthermore
where n # g and n does not divide ¢* — 1 for each 1 < k < 20. It then constructs the coefficients
of . The CM method is only efficient for small D, in which case it is much faster than Schoof’s
algorithm. Thus, a potential drawback of the CM method is that it can only be used to generate
elliptic curves having complex multiplication by small D.

KoBriTz CURVES. These curves, also known as anomalous binary curves, were first proposed for
cryptographic use by Koblitz [42]. They are elliptic curves over Fom whose defining equations have
coefficients in Fs. Thus, there are 2 Koblitz curves over Fom: y? + 2y = 22 + 1 and y? + 2y =
23 + 22 + 1. Solinas [88, 90], building on earlier work of Meier and Staffelbach [53], showed how
one can compute kP very efficiently for arbitrary k& where P is a point on a Koblitz curve. Since
performing such scalar multiplications is the dominant computational step in ECDSA signature
generation and verification (see §7), Koblitz curves are very attractive for use in the ECDSA.

5.4 Domain Parameter Validation

Domain parameter validation ensures that the domain parameters have the requisite arithmetical
properties. Reasons for performing domain parameter validation in practice include: (i) prevention
of malicious insertion of invalid domain parameters which may enable some attacks; and (ii) detec-
tion of inadvertent coding or transmission errors. Use of an invalid set of domain parameters can
void all expected security properties.

An example of a concrete (albeit far-fetched) attack that can be launched if domain parameter
validation for a signature scheme is not performed was demonstrated by Blake-Wilson and Menezes
[10]. The attack is on a key agreement protocol which employs the ElGamal signature scheme.
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METHODS FOR VALIDATING DOMAIN PARAMETERS. The assurance that aset D = (¢,FR, a,b, G, n,
h) of EC domain parameters is valid can be provided to an entity using one of the following methods:

1. A performs explicit domain parameter validation using Algorithm 5 (shown below).
2. A generates D itself using a trusted system.

3. A receives assurance from a trusted party T (e.g., a Certification Authority) that T has
performed explicit domain parameter validation of D using Algorithm 5.

4. A receives assurance from a trusted party T that D was generated using a trusted system.

ALGORITHM 5: EXPLICIT VALIDATION OF A SET oF EC DoMAIN PARAMETERS.
INPUT: A set of EC domain parameters D = (¢,FR, a,b, G, n, h).
OuTPUT: Acceptance or rejection of the validity of D.

Verify that ¢ is an odd prime (¢ = p) or a power of 2 (¢ = 2™).
Verify that FR is a “valid” representation for F,.
Verify that G # O.

= W N =

Verify that a, b, ¢ and yg are properly represented elements of F, (i.e., integers in the
interval [0, p — 1] in the case ¢ = p, and bit strings of length m bits in the case ¢ = 2™).

5. (Optional) If the elliptic curve was randomly generated in accordance with Algorithm 1 or
Algorithm 3 of §5.2, verify that seedE is a bit string of length at least 160 bits and use
Algorithm 2 or Algorithm 4 to verify that a and b were suitably derived from seedE.

6. Verify that a and b define an elliptic curve over F, (i.e., 4a® + 27b% # 0 (mod p) if ¢ = p;
b#£0if g =2m).

7. Verify that G lies on the elliptic curve defined by a and b (i.e., y4 = 3, + azg + b in the case
g =p, and y% + zgyc = & + az% + b in the case ¢ = 2™).

8. Verify that n is prime.
9. Verify that n > 2!%° and that n > 4,/q.
10. Verify that nG = O.
11. Compute b’ = [(,/g+ 1)?/n| and verify that h = }'.
12. Verify that n does not divide ¢* — 1 for each k, 1 < k < 20.
13. Verify that n # gq.

14. If any verification fails, then D is invalid; otherwise D is valid.

VERIFYING THE ORDER OF AN ELLIPTIC CURVE. Recall that by Hasse’s Theorem, (/g — 1)? <
#E(F,) < (,/g+1)%. Hence n > 4,/7 implies that n* does not divide #FE(F,), and thus E(F,) has
a unique subgroup of order n. Also, since (/g 4+ 1)? — (/g — 1)> = 4,/g, there is a unique integer
h such that ¢+ 1 — 2,/g < nh < ¢+ 1+ 2,/g, namely h = (/g +1)*/n]. Thus steps 9, 10 and 11
of Algorithm 5 verify that #E(F,) is indeed equal to nh.
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As noted in §5.2, counting the number of points on a randomly generated elliptic curve is a
complicated and cumbersome task. In practice, one may buy software from a vendor to perform the
point counting. We note that since the alleged order of an elliptic curve can be efficiently verified

with 100% certainty, such software does not have to be trusted.

6 ECDSA Key Pairs

An ECDSA key pair is associated with a particular set of EC domain parameters. The public key
is a random multiple of the base point, while the private key is the integer used to generate the
multiple. §6.1 summarizes the procedure for key pair generation. §6.2 presents a procedure for
verifying that a given public key meets all requirements. §6.3 discusses the importance of proving
possession of a private key corresponding to a public key to a Certification Authority (CA) when
the public key is being certified by the CA.

6.1 Key Pair Generation

An entity A’s key pair is associated with a particular set of EC domain parameters D = (¢, FR, a, b,
G,n, h). This association can be assured cryptographically (e.g., with certificates) or by context
(e.g., all entities use the same domain parameters). The entity A must have the assurance that the

domain parameters are valid (see §5.4) prior to key generation.

ECDSA KeY Pair GENERATION. Each entity A does the following:

1. Select a random or pseudorandom integer d in the interval [1,n — 1].
2. Compute Q = dG.
3. A’s public key is Q); A’s private key is d.

6.2 Public Key Validation

Public key validation, as first enunciated by Johnson [37], ensures that a public key has the requisite
arithmetical properties. Successful execution of this routine demonstrates that an associated private
key logically exists, although it does not demonstrate that someone actually has computed the
private key nor that the claimed owner actually possesses the private key. Reasons for performing
public key validation in practice include: (i) prevention of malicious insertion of an invalid public
key which may enable some attacks; and (ii) detection of inadvertent coding or transmission errors.
Use of an invalid public key can void all expected security properties.

An example of a concrete attack that can be launched if public key validation is not performed
was demonstrated by Lim and Lee [51]. The attack is on a Diffie-Hellman-based key agreement

protocol.

METHODS FOR VALIDATING PUBLIC KEYS. The assurance that a public key @ is valid can be
provided to an entity A using one of the following methods:

1. A performs explicit public key validation using Algorithm 6 (shown below).

2. A generates @ itself using a trusted system.
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3. A receives assurance from a trusted party T (e.g., a Certification Authority) that T has
performed explicit public key validation of A using Algorithm 6.

4. A receives assurance from a trusted party T that () was generated using a trusted system.

ALGORITHM 6: EXPLICIT VALIDATION OF AN ECDSA PusLic KEY.
INPUT: A public key Q = (2¢, yg) associated with valid domain parameters (¢, FR, a,b,G,n,h).
OuTPUT: Acceptance or rejection of the validity of Q.

1. Check that Q # O.

2. Check that zg and yq are properly represented elements of F, (i.e., integers in the interval
[0,p — 1] in the case ¢ = p, and bit strings of length m bits in the case ¢ = 2™).

3. Check that @ lies on the elliptic curve defined by a and b.
4. Check that nQ = O.
5. If any check fails, then Q is invalid; otherwise Q is valid.

6.3 Proof of Possession of a Private Key

If an entity C is able to certify A’s public key @ as its own public key, then C' can claim that A’s
signed messages originated from C'. To avoid this, the CA should require all entities A to prove
possession of the private keys corresponding to its public keys before the CA certifies the public key
as belonging to A. This proof of possession can be accomplished by a variety of means, for example
by requiring A to sign a message of the CA’s choice, or by using zero-knowledge techniques (see
Chaum, Evertse and van de Graaf [14]). Note that proof of possession of a private key provides
different assurances from public key validation. The former demonstrates possession of a private
key even though it may correspond to an invalid public key, while the latter demonstrates validity
of a public key but not ownership of the corresponding private key. Doing both provides a high
level of assurance.

7 ECDSA Signature Generation and Verification

This section describes the procedures for generating and verifying signatures using the ECDSA.

ECDSA SIiGNATURE GENERATION. To sign a message m, an entity A with domain parameters
D = (¢,FR,a,b,G, n, h) and associated key pair (d, Q) does the following:

1. Select a random or pseudorandom integer k, 1 < k <n — 1.

2. Compute kG = (21,y1) and r = 23 mod n. If » = 0 then go to step 1.
3. Compute k! mod n.

4. Compute e = SHA-1(m).

5. Compute s = k~!(e + dr) mod n. If s = 0 then go to step 1.

6

. A’s signature for the message m is (r, s).
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ECDSA S1GNATURE VERIFICATION. To verify A’s signature (r,s) on m, B obtains an authen-
tic copy of A’s domain parameters D = (¢,FR,a,b,G,n,h) and associated public key Q. It is
recommended that B also validates D and Q (see §5.4 and §6.2). B then does the following:

1. Verify that » and s are integers in the interval [1,n — 1].
2. Compute e = SHA-1(m).

3. Compute w = s~! mod n.

4. Compute u; = ew mod n and us = rw mod n.

5

. Compute X = u1G 4+ u2Q. If X = O, then reject the signature. Otherwise, compute

v =27 mod n where X = (21, y1).

6. Accept the signature if and only if v = r.

PROOF THAT SIGNATURE VERIFICATION WORKS. If a signature (r, s) on a message m was indeed
generated by A, then s = k~!(e + dr) mod n. Rearranging gives

k= s_l(e +dr) = sle+ s7lrd = we + wrd = ug + usd (mod n).
Thus u1G + u2Q = (u1 + u2d)G = kG, and so v = r as required.

CONVERSION BETWEEN DATA TyYPES. ANSI X9.62 specifies a method for converting field elements
to integers. This is used to convert the field element #; to an integer in step 2 of signature generation
and step 5 of signature verification prior to computing z; mod n. ANSI X9.62 also specifies a
method for converting bit strings to integers. This is used to convert the output e of SHA-1 to an
integer prior to its use in the modular computation in step 5 of signature generation and step 4 of

signature verification.

PuBLic-KEY CERTIFICATES. Before verifying A’s signature on a message, B needs to obtain an
authentic copy of A’s domain parameters D and associated public key . ANSI X9.62 does not
specify a mechanism for achieving this. In practice, authentic public keys are most commonly
distributed via certificates. A’s public-key certificate should include a string of information that
uniquely identifies A (such as A’s name and address), her domain parameters D (if these are not
already known from context), her public key @, and a certifying authority’s (CA’s) signature over
this information. B can then use his authentic copy of the CA’s public key to verify A’s certificate,
thereby obtaining an authentic copy of A’s static public key.

RATIONALE FOR CHECKS ON r AND s IN SIGNATURE VERIFICATION. Step 1 of signature verifi-
cation checks that » and s are integers in the interval [1,n — 1]. These checks can be performed
very efficiently, and are prudent measures in light of known attacks on related ElGamal signature
schemes which do not perform these checks (for example of such attacks, see Bleichenbacher [11]).
The following is a plausible attack on ECDSA if the check » # 0 (and, more generally, » # 0
(mod n)) is not performed. Suppose that A is using the elliptic curve y* = 2> + az + b over F,,
where b is a quadratic residue modulo p, and suppose that A uses a base point G = (0, \/l_)) of

prime order n. (It is plausible that all entities may select a base point with 0 z-coordinate in order
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to minimize the size of domain parameters.) An adversary can now forge A’s signature on any
message m of its choice by computing e = SHA-1(m). It can easily be checked that (r = 0,s = e)
is a valid signature for m.

CoMPARING DSA aAND ECDSA. Conceptually, the ECDSA is simply obtained from the DSA by
replacing the subgroup of order ¢ of Z;, generated by g with the subgroup of points on an elliptic
curve that are generated by G. The only significant difference between ECDSA and DSA is in the
generation of 7. The DSA does this by taking the random element X = g* mod p and reducing
it modulo ¢, thus obtaining an integer in the interval [1,¢ — 1]. The ECDSA generates r in the
interval [1,n — 1] by taking the z-coordinate of the random point kG and reducing it modulo n.

8 Security Considerations

The security objective of ECDSA is to be existentially unforgeable against a chosen-message attack.
The goal of an adversary who launches such an attack against a legitimate entity A is to obtain
a valid signature on a single message m, after having obtained A’s signature on a collection of
messages (not including m) of the adversary’s choice.

ECDSA has not been proven to be existentially unforgeable against chosen-message attack.
However, slight variants of DSA (and hence also slight variants of ECDSA) have been proven
secure by Pointcheval and Stern [72] under the assumptions that the discrete logarithm problem is
hard and that the hash function employed is a random function.

The possible attacks on ECDSA can be classified as follows:

1. Attacks on the elliptic curve discrete logarithm problem.
2. Attacks on the hash function employed.
3. Other attacks.

This section summarizes the current knowledge of these attacks and how they can be avoided in
practice.

8.1 The Elliptic Curve Discrete Logarithm Problem

One way in which an adversary can succeed is to compute A’s private key d from A’s domain pa-
rameters (¢, FR, a, b, G,n, h) and public key Q. The adversary can subsequently forge A’s signature
on any message of its choice.

ProBLEM DEFINITION. The elliptic curve discrete logarithm problem (ECDLP) is the following:
given an elliptic curve E defined over a finite field Fy, a point P € E(F,) of order n, and a point
Q =[P where 0 <! <n —1, determine [.

8.1.1 Known Attacks

This subsection overviews the algorithms known for solving the ECDLP and discusses how they

can be avoided in practice.
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1. NAIVE EXHAUSTIVE SEARCH. In this method, one simply computes successive multiples of
P: P, 2P, 3P, 4P, ... until Q) is obtained. This method can take up to n steps in the worst

case.

2. PoHLIG-HELLMAN ALGORITHM. This algorithm, due to Pohlig and Hellman [71], exploits the
factorization of n, the order of the point P. The algorithm reduces the problem of recovering
[ to the problem of recovering I modulo each of the prime factors of n; the desired number [

can then be recovered by using the Chinese Remainder Theorem.

The implications of this algorithm are the following. To construct the most difficult instance
of the ECDLP, one must select an elliptic curve whose order is divisible by a large prime n.
Preferably, this order should be a prime or almost a prime (i.e. a large prime n times a small
integer h). For the remainder of this section, we shall assume that the order n of P is prime.

3. BABY-STEP GIANT-STEP ALGORITHM. This algorithm is a time-memory trade-off of the
method of exhaustive search. It requires storage for about y/n points, and its running time

is roughly /n steps in the worst case.

4. PoLLARD’s RHO ALGORITHM. This algorithm, due to Pollard [73], is a randomized version of
the baby-step giant-step algorithm. It has roughly the same expected running time (1/7n/2
steps) as the baby-step giant-step algorithm, but is superior in that it requires a negligible
amount of storage.

Gallant, Lambert and Vanstone [23], and Wiener and Zuccherato [97] showed how Pollard’s
rho algorithm can be sped up by a factor of v/2. Thus the expected running time of Pollard’s
rho method with this speedup is (1/7n)/2 steps.

5. PARALLELIZED PoLLARD’S RHO ALGORITHM. Van Oorschot and Wiener [70] showed how
Pollard’s rho algorithm can be parallelized so that when the algorithm is run in parallel on
r processors, the expected running time of the algorithm is roughly (y/7n)/(2r) steps. That
is, using r processors results in an r-fold speed-up.

6. POLLARD’S LAMBDA METHOD. This is another randomized algorithm due to Pollard [73].
Like Pollard’s rho method, the lambda method can also be parallelized with a linear speedup.
The parallelized lambda-method is slightly slower than the parallelized rho-method [70]. The
lambda-method is, however, faster in situations when the logarithm being sought is known
to lie in a subinterval [0, b] of [0,n — 1], where b < 0.39n [70].

7. MurTIPLE LoGARITEMS. R. Silverman and Stapleton [85] observed that if a single instance
of the ECDLP (for a given elliptic curve E and base point P) is solved using (parallelized)
Pollard’s rho method, then the work done in solving this instance can be used to speed up
the solution of other instances of the ECDLP (for the same curve E and base point P). More
precisely, if the first instance takes expected time ¢, then the second instance takes expected
time (v/2 — 1)t ~ 0.41¢. Having solved these two instances, the third instance takes expected
time (v/3 — v/2) ~ 0.32t. Having solved these three instances, the fourth instance takes
expected time (v/4 — v/3) &~ 0.27t. And so on. Thus subsequent instances of the ECDLP for

a particular elliptic curve become progressively easier. Another way of looking at this is that
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10.

11.

solving k instances of the ECDLP (for the same curve E and base point P) takes only /k as
much work as it does to solve one instance of the ECDLP. This analysis does not take into
account storage requirements.

Concerns that successive logarithms become easier can be addressed by ensuring that the
elliptic parameters are chosen so that the first instance is infeasible to solve.

. SUPERSINGULAR ELLIPTIC CURVES. Menezes, Okamoto and Vanstone [55, 54] and Frey and

Riick [21] showed how, under mild assumptions, the ECDLP in an elliptic curve E defined
over a finite field F, can be reduced to the ordinary DLP in the multiplicative group of
some extension field F x for some k > 1, where the number field sieve algorithm applies. The
reduction algorithm is only practical if k is small — this is not the case for most elliptic curves,
as shown by Balasubramanian and Koblitz [6]. To ensure that the reduction algorithm does
not apply to a particular curve, one only needs to check that n, the order of the point P, does
not divide ¢* — 1 for all small k for which the DLP in F,x is tractable — in practice, when
n > 2% then 1 < k < 20 suffices [3].

An elliptic curve E over F, is said to be supersingular if the trace ¢ of E is divisible by the
characteristic p of F,. For this very special class of elliptic curves, it is known that k£ < 6. It
follows that the reduction algorithm yields a subexponential-time algorithm for the ECDLP
in supersingular curves. For this reason, supersingular curves are explicitly excluded from
use in the ECDSA by the above divisibility check.

More generally, the divisibility check rules out all elliptic curves for which the ECDLP can be
efficiently reduced to the DLP in some small extension of F,. These include the supersingular

elliptic curves and elliptic curves of trace 2 (elliptic curves E over F, for which #E(F,) = ¢—1).

. PRIME-FIELD ANoMALOUS CURVES. An elliptic curve E over F, is said to be prime-field-

anomalous if #E(F,) = p. Semaev [82], Smart [86], and Satoh and Araki [77] showed how
to efficiently solve the ECDLP for these curves. The attack does not extend to any other
classes of elliptic curves. Consequently, by verifying that the number of points on an elliptic
curve is not equal to the cardinality of the underlying field, one can easily ensure that the
Semaev-Smart-Satoh-Araki attack does not apply.

CurvES DEFINED OVER A SMALL FIELD. Suppose that E is an elliptic curve defined over
the finite field Foc. Gallant, Lambert and Vanstone [23], and Wiener and Zuccherato [97]
showed how Pollard’s rho algorithm for computing elliptic curve logarithms in E(Fyeq) can be
further sped up by a factor of v/d — thus the expected running time of Pollard’s tho method
for these curves is (1/mn/d)/2 steps. For example, if E is a Koblitz curve (see §5.3), then
Pollard’s rho algorithm for computing elliptic curve logarithms in E(Fym) can be sped up by
a factor of y/m. This speedup should be considered when doing a security analysis of elliptic
curves whose coefficients lie in a small subfield.

CurvEs DEFINED OVER Fym, m CoOMPOSITE. Galbraith and Smart [22], expanding on
earlier work of Frey [20], discuss how the Weil descent might be used to solve the ECDLP
for elliptic curves defined over Fam where m is composite (such fields are sometimes called

composite fields). More recently, Gaudry, Hess and Smart [24] refined these ideas to provide
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strong evidence that when m has a small divisor [, e.g. [ = 4, the ECDLP for elliptic curves
defined over Fom can be solved faster than with Pollard’s rho algorithm. In light of these
results, it seems prudent to not use elliptic curves over composite fields.

It should be noted that some ECC standards, including the draft ANSI X9.63 [4], explicitly
exclude the use of elliptic curves over composite fields. The ANSI X9F1 committee also agreed
in January 1999 to exclude the use of such curves in a forthcoming revision of ANSI X9.62.

NoON-APPLICABILITY OF INDEX-CALCULUS METHODS. Whether or not there exists a general
subexponential-time algorithm for the ECDLP is an important unsettled question, and one of
great relevance to the security of ECDSA. It is extremely unlikely that anyone will ever be able
to prove that no subexponential-time algorithm exists for the ECDLP. However, much work
has been done on the DLP over the past 24 years, and more specifically on the ECDLP over
the past 16 years, and no subexponential-time algorithm has been discovered for the ECDLP.
Miller [567] and J. Silverman and Suzuki [84] have given convincing arguments for why the
most natural way in which the index-calculus algorithms can be applied to the ECDLP is
most likely to fail.

XEDNI-CALCULUS ATTACKS. A very interesting line of attack on the ECDLP, called the
zedni-calculus attack was recently proposed by J. Silverman [83]. One intriguing aspect of
the xedni-calculus is that it can be adapted to solve both the ordinary discrete logarithm
and the integer factorization problems. However, it was subsequently shown by a team of
researchers including J. Silverman (see Jacobson et al. [36]) that the attack is virtually certain
to fail in practice.

HypPERELLIPTIC CURVES. Hyperelliptic curves are a family of algebraic curves of arbitrary
genus that includes elliptic curves. Hence, an elliptic curve can be viewed as a hyperelliptic
curve of genus 1. Adleman, DeMarrais and Huang [1] (see also Stein, Miiller and Thiel [92])
presented a subexponential-time algorithm for the discrete logarithm problem in the jacobian
of a large genus hyperelliptic curve over a finite field. However, in the case of elliptic curves,

the algorithm is worse than naive exhaustive search.

EQUIVALENCE TO OTHER DISCRETE LOGARITHM PROBLEMS. Stein [91] and Zuccherato
[99] showed that the discrete logarithm problem in real quadratic congruence function fields
of genus 1 is equivalent to the ECDLP. Since no subexponential-time algorithm is known for
the former problem, this may provide further evidence for the hardness of the ECDLP.

8.1.2 Experimental Results

The best general-purpose algorithm known for the ECDLP is the parallelized version of Pollard’s

rho algorithm which has an expected running time of (y/7n)/(2r) steps, where n is the (prime)

order of the base point P, and r is the number of processors utilized.

CerticoM’s ECC CHALLENGE. Certicom initiated an ECC challenge [13] in November 1997 in
order to encourage and stimulate research on the ECDLP. Their challenges consist of instances of

the ECDLP on a selection of elliptic curves. The challenge curves are divided into three categories
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listed below. In the following, ECCp-k denotes a random curve over a field F,,, ECC2-k denotes a
random curve over a field Fam, and ECC2K-k denotes a Koblitz curve (see §5.3) over Fam; k is the
bitlength of n. In all cases, the bitsize of the order of the underlying finite field is equal or slightly
greater than k (so curves have either prime order or almost prime order).

1. Randomly generated curves over F,,, where p is prime: ECCp-79, ECCp-89, ECCp-97, ECCp-
109, ECCp-131, ECCp-163, ECCp-191, ECCp-239, and ECCp-359.

2. Randomly generated curves over Fom, where m is prime: ECC2-79, ECC2-89, ECC2-97,
ECC2-109, ECC2-131, ECC2-163, ECC2-191, ECC2-238, and ECC2-353.

3. Koblitz curves over Fam, where m is prime: ECC2K-95, ECC2-108, ECC2-130, ECC2-163,
ECC2-238, and ECC2-358.

REsuLTs OF THE CHALLENGE. Escott et al. [19] report on their 1998 implementation of the
parallelized Pollard’s rho algorithm which incorporates some improvements of Teske [93]. The
hardest instance of the ECDLP they solved was the Certicom ECCp-97 challenge. For this task
they utilized over 1200 machines from at least 16 countries, and found the answer in 53 days. The
total number of steps executed was about 2 x 10* elliptic curve additions which is close to the
expected time ((/71)/2 ~ 3.5 x 10!, where n ~ 2°7). Escott et al. [19] conclude that the running
time of Pollard’s rho algorithm in practice fits well with the theoretical predictions. They estimate
that the ECCp-109 challenge could be solved by a network of 50,000 Pentium Pro 200MHz machines
in about 3 months.

8.1.3 Hardware Attacks

Van Oorschot and Wiener [70] examined the feasibility of implementing parallelized Pollard’s rho

03¢ x~ 2129 then a machine

algorithm using special-purpose hardware. They estimated that if n = 1
with » = 330, 000 processors could be built for about US $10 million that could compute a single
elliptic curve discrete logarithm in about 32 days. Since ANSI X9.62 mandates that the parameter

n should satisfy n > 210, such hardware attacks appear to be infeasible with today’s technology.

8.2 Attacks on the Hash Function

DEFINITION. A (cryptographic) hash function H is a function that maps bit strings of arbitrary
lengths to bit strings of a fixed length ¢ such that:

1. H can be computed efficiently;

2. (preimage resistance) For essentially all y € {0,1} it is computationally infeasible to find a
bit string « such that H(z) = y; and

3. (collision resistance) It is computationally infeasible to find distinct bit strings z; and
such that H(z;) = H(z2).

SHA-1 SEcURITY REQUIREMENTS. The following explains how attacks on ECDSA can be suc-
cessfully launched if SHA-1 is not preimage resistant or not collision resistant.
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1. If SHA-1 is not preimage resistant, then an adversary E may be able to forge A’s signatures
as follows. F selects an arbitrary integer I/, and computes r as the z-coordinate of Q + IG
reduced modulo n. F sets s = r and computes e = rl mod n. If F can find a message m such

that e = SHA-1(m), then (r, s) is a valid signature for m.

2. If SHA-1 is not collision resistant, then an entity A may be able to repudiate signatures as
follows. A first generate two messages m and m' such that SHA-1(m) = SHA-1(m'); such a
pair of messages is called a collision for SHA-1. She then signs m, and later claims to have

signed m’ (note that every signature for m is also a signature for m’).

IDEAL SECURITY. A t-bit hash function is said to be have ideal security [56] if both: (i) given
a hash output, producing a preimage requires approximately 2° operations; and (ii) producing a
collision requires approximately 2¢/2 operations. SHA-1 is a 160-bit hash function and is believed
to have ideal security. The fastest method known for attacking ECDSA by exploiting properties of
SHA-1 is to find collisions for SHA-1. Since this is believed to take 28 steps, attacking ECDSA in
this way is computationally infeasible. Note, however, that this attack imposes an upper bound of
280 on the security level of ECDSA, regardless of the size of the primary security parameter n. Of
course, this is also the case with all present signature schemes with appendix since the only hash
functions that are widely accepted as being both secure and practical are SHA-1 and RIPEMD-160
(see Dobbertin, Bosselaers and Preneel [17]), both of which are 160-bit hash functions.

VARIABLE OuTPUT LENGTH HAsH FuncTiONs. It is envisioned that SHA-1 will eventually be
replaced by a family of hash functions H;, where Hj is an [-bit hash function having ideal security.
If one uses ECDSA with parameter n, then one would use H;, where [ = |log, n], as the hash
function. In this case, attacking ECDSA by solving the ECDLP and attacking ECDSA by finding
collisions for Hj, both take approximately the same amount of time.

8.3 Other Attacks

SECURITY REQUIREMENTS FOR PER-MESSAGE SECRETS. The per-message secrets k in ECDSA
signature generation have the same security requirements as the private key d. This is because if
an adversary F learns a single per-message secret k which was used by A to generate a signature
(7, 5) on some message m, then E can recover A’s private key since d = r~!(ks — e) mod n where
e = SHA-1(m) (see step 5 of ECDSA signature generation). Hence per-message secrets must be
securely generated, securely stored, and securely destroyed after they have been used.

REPEATED USE OF PER-MESSAGE SECRETS. The per-message secrets k used to sign two or more
messages should be generated independently of each other. In particular, a different per-message
secret k should be generated for each different message signed; otherwise, the private key d can
be recovered. Note that if a secure random or pseudorandom number generator is used, then the
chance of generating a repeated k value is negligible. To see how private keys can be recovered if
per-message secrets are repeated, suppose that the same per-message secret k was used to generate
ECDSA signatures (r, s1) and (r, s2) on two different messages m; and my. Then s; = k™ !(e; +dr)
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(mod n) and s2 = k™ !(es + dr) (mod n), where e; = SHA-1(m;) and e; = SHA-1(m2). Then
ks; = e;+dr (mod n) and ks; = e; +dr (mod n). Subtraction gives k(s; —s3) = e; — ez (mod n).
If s; # s (mod n), which occurs with overwhelming probability, then k£ = (s; — s3)7(e; — e3)

(mod n). Thus, an adversary can determine k, and then use this to recover d.

VAUDENAY’S ATTACKS. Vaudenay [95] demonstrated a theoretical weakness in DSA based on his
insight that the actual hash function used in the DSA is SHA-1 modulo ¢, not just SHA-1, where
¢ is a 160-bit prime. (Since SHA-1 is a 160-bit hash function, some of its outputs, when converted
to integers, are larger than ¢. Hence, in general, SHA-1(m) # (SHA-1(m) mod ¢).) This weakness
allows the selective forgery of one message if the adversary can select the domain parameters. This

weakness is not present in ECDSA because of the requirement that n (the analogous quantity to ¢
in the DSA) be greater than 21,

DUPLICATE-SIGNATURE KEY SELECTION. A signature scheme S is said to have the duplicate-
signature key selection (DSKS) property if given A’s public key P4 and given A’s signature sy
on a message M, an adversary E is able to select a valid key pair (Pg, Sg) for S such that s4 is
also E’s signature on M. Note that this definition requires that Sg is known to E. Blake-Wilson
and Menezes [10] showed how this property can be exploited to attack a key agreement protocol
which employs signatures scheme. They also demonstrated that if entities are permitted to select
their own domain parameters, then ECDSA possesses the DSKS property. To see this, suppose
that A’s domain parameters are Dy = (¢,FR,a,b,G,n, h), A’s key pair is (Q4,d4), and (r,s) is
A’s signature on M. The adversary E selects an arbitrary integer ¢, 1 < ¢ < n — 1, such that
t := ((s7'e + s7'rc) mod n) # 0, computes X = s 1eG + s 1rQ (where e = SHA-1(M)) and
G = (t7! mod n)X. E then forms Dg = (q,FR,a,b,G,n,h) and Qg = ¢G. Then it is easily
verified that Dg and Qg are valid, and that (r, s) is also E’s signature on M.

If one mandates that the generating point G be selected verifiably at random during domain
parameter generation (using a method akin to those in §5.2 for generating elliptic curves verifiably
at random), then it appears that ECDSA no longer possesses the DSKS property. It must be
emphasized that possession of the DSKS property does not constitute a weakness of the signature
scheme — the goal of a signature scheme is to be existentially unforgeable against an adaptive
chosen-message attack. Rather, it demonstrates the importance of auditing domain parameter and
public key generation.

IMPLEMENTATION ATTACKS. ANSI X9.62 does not address attacks that could be launched against
implementations of ECDSA such as timing attacks (Kocher [44]), differential fault analysis (Boneh,
DeMillo and Lipton [12]), differential power analysis (Kocher, Jaffe and Jun [45]), and attacks
which exploit weak random or pseudorandom number generators (Kelsey et al. [39]).

9 Implementation Considerations

Before implementing ECDSA, several basic choices have to be made including:
1. Type of underlying finite field F, (F, or Fym).

2. Field representation (e.g., polynomial or normal basis for Fam).
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3. Type of elliptic curve E over F, (e.g., random curve or Koblitz curve).

4. Elliptic curve point representation (e.g., affine or projective coordinates [30]).

There are many factors that can influence the choices made. All of these must be considered
simultaneously in order to arrive at the best solution for a particular application. The factors

include:
e Security considerations.

e Suitability of methods available for optimizing finite field arithmetic (addition, multiplication,

squaring, and inversion).

e Suitability of methods available for optimizing elliptic curve arithmetic (point addition, point

doubling, and scalar multiplication).
e Application platform (software, hardware, or firmware).

e Constraints of a particular computing environment (e.g., processor speed, storage, code size,

gate count, power consumption).

e Constraints of a particular communications environment (e.g., bandwidth, response time).

SELECTED REFERENCES TO THE LITERATURE. The most detailed and comprehensive reference
available on techniques for efficient finite field and elliptic curve arithmetic is IEEE P1363 [30]. See
Gordon [28] for a detailed survey of various methods for scalar multiplication. For an implemen-
tation report of elliptic curve operations over F,, and Fym, see Schroeppel et al. [81], De Win et al.
[98], and Hasegawa, Nakajima and Matsui [29].

10 Interoperability Considerations

The goals of cryptographic standards are twofold:
1. To facilitate the widespread use of cryptographically sound and well-specified techniques.

2. To promote interoperability between different implementations.

FACTORS AFFECTING INTEROPERABILITY. Interoperability is encouraged by completely specifying
the steps of the cryptographic schemes and the formats for shared data such as domain parameters,
keys, and exchanged messages, and by limiting the number of options available to the implemen-
tor. For elliptic curve cryptography and, in particular, the ECDSA, the factors that can impact

interoperability include:

1. The number, and types, of allowable finite fields.

2. The number of allowable representations for the elements of an allowable finite field.
3. The number of allowable elliptic curves over an allowable finite field.
4

. The formats for specifying field elements, elliptic curve points, domain parameters, public

keys, and signatures.
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10.1 ECDSA Standards

Among the standards and draft standards which specify ECDSA, the ones which have been offi-
cially approved by their respective accredited organizations are ANSI X9.62 [3], FIPS 186-2 [62],
IEEE P1363 [30], and ISO 14888-3 [33]. The salient features of these standards are described first,
and then the standards are compared with regards to their compatibility with each other. This is
followed by a brief overview of some other standards that specify or use ECDSA.

CorE ECDSA STANDARDS.

1. ANSI X9.62: This project began in 1995 and was adopted as an official ANSI standard in
January 1999. The primary objectives of ANSI X9.62 were to achieve a high level of security
and interoperability. The underlying field is restricted to being a prime finite field F, or a
binary finite field Fom. The elements of Fom may be represented using a polynomial or a nor-
mal basis over F,. If a polynomial basis is desired, ANSI X9.62 mandates that the reduction
polynomial be an irreducible trinomial, provided one exists, and an irreducible pentanomial
otherwise. To facilitate interoperability, a specific reduction polynomial is recommended for
each field Fam (see §3.2.1). If a normal basis is desired, ANSI X9.62 mandates that a specific
Gaussian normal basis be used (see §3.2.2). The primary security requirement imposed on
elliptic curves in ANSI X9.62 is that 7, the order of the base point G, be greater than 2,
Elliptic curves may be either be selected arbitrarily (subject to the security constraints men-
tioned in §5.1) or verifiably at random (using the procedure described in §5.3). ANSI X9.62
defines a mandatory octet string representation for elliptic points in either compressed, un-
compressed, or hybrid form. Optional ASN.1 (Abstract Syntax Notation One) syntax is
provided for unambiguously describing domain parameters, public keys, and signatures.

2. FIPS 186-2: In May 1997, NIST announced plans to revise FIPS 186 by including RSA and
elliptic curve signature algorithms. In December 1998, FIPS 186 was revised to include both
the DSA and RSA signature schemes (as specified in ANSI X9.31 [2]); the revised standard
was called FIPS 186-1 [61]. Shortly after that, in June 1999, NIST presented a list of 15
elliptic curves that were recommended for U.S. Federal Government use [65]. These curves
are compliant with the ANSI X9.62 formats (and therefore also with IEEE P1363 formats)
and are discussed further in §10.2. In February 2000, FIPS 186-1 was revised to include
ECDSA as specified in ANSI X9.62 with the choice of elliptic curves restricted to those in
§10.2; the revised standard is called FIPS 186-2.

3. IEEE P1363: This project was formally approved as an IEEE standard in February 2000.
P1363’s scope is very broad and includes public-key cryptographic techniques for encryption,
key agreement, and signatures based on the intractability of integer factorization, discrete
logarithms in finite fields, and elliptic curve discrete logarithms. It differs fundamentally
from ANSI X9.62 and FIPS 186-2 in that it does not mandate minimum security requirements
(e.g., lower bounds on the order n of the base point G) and has an abundance of options.
Consequently, P1363 should neither be viewed as a security standard nor as an interoperability
standard, but rather as a reference for specifications of a variety of techniques from which
applications may select. With regards to the elliptic curve schemes and, in particular, ECDSA,
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the underlying field is restricted to being a prime finite field F,, or a binary finite field Fom.
The elements of Fsm may be represented with respect to any polynomial or normal basis
over Fy. The representation of F,, elements as integers and Fym elements as bit strings are
consistent with ANSI X9.62 and FIPS 186-2 conventions.

4. ISO/IEC 14888-3 [33]: This standard contains high-level descriptions of some signature
algorithms including ECDSA, whose description is consistent with that of ANSI X9.62.

CoOMPATIBILITY. Any ECDSA implementation that is conformant with FIPS 186-2 is also confor-
mant with ANSI X9.62; however the converse is not necessarily true. Furthermore, any ECDSA
implementation that is conformant with ANSI X9.62 is also conformant with IEEE P1363; however
the converse is not necessarily true. Finally, any ECDSA implementation that is conformant with
IEEE P1363 is also conformant with ISO 14888-3, but the converese is not necessarily true. This
conformance relationship between the four ECDSA standards is depicted in Figure 3.

ISO 14888-3

FIPS 186-2

Figure 3: Compatibility of FIPS 186-2, ANSI X9.62, IEEE P1363 and ISO 14888-3 specifications
of ECDSA.

OTHER ECDSA STANDARDS. ECDSA is being considered for inclusion in numerous core cryptog-
raphy and applications standards. These include:

1. ISO/IEC 15946 [34]: This draft standard specifies various cryptographic techniques based
on elliptic curves including signature schemes, public-key encryption schemes, and key estab-
lishment protocols. ISO/TEC 15946 allows any finite field, unlike ANSI X9.62, IEEE P1363,
and FIPS 186-2 where the underlying field is required to be either a prime field or a binary
field. It is expected that the ECDSA description will be consistent with that of ANSI X9.62.

2. IETF PKIX (Internet Engineering Task Force Public Key Infrastructure X.509-Based): An
internet draft [7] profiles the format of ECDSA domain parameters and public keys for use
in X.509 certificates. The formats are consistent with those present in ANSI X9.62.
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3. IETF TLS (Internet Engineering Task Force Transport Layer Security): This is the IETF’s
adoption of SSL (Secure Sockets Layer) which provides confidentiality, integrity, and authen-
tication for network connections. ANSI X9.62 ECDSA is being considered for inclusion as

one of the signature algorithms [15].

4. WAP WTLS [96] (Wireless Application Protocol Wireless Transport Layer Security): Pro-
vides transport layer security for an architecture that enables secure web browsing for mobile
devices such as cellular phones, personal device assistants, and pagers. ANSI X9.62 ECDSA

is used for authentication.

10.2 NIST Recommended Curves

This subsection presents the 15 elliptic curves that were recommended (but not mandated) by
NIST in June 1999 for U.S. Federal Government use [65]. These curves are also recommended in
the FIPS 186-2 standard.

REcCOMMENDED FINITE FIELDS. There are 10 recommended finite fields:

1. The prime fields F,, for p = 2192 —26% 1 p =224 296 1 1 p =226 _ 22244 9192 4 996 1
p= 2384 _ 2128 _ 296_|_232 —1. and p= 2521 1.

2. The binary fields Fyies, Fy23s, Fo2s3, Fos09, and Fysri.

The factors which influenced the choices of fields were:

(i) The fields were selected so that the bitlengths of their orders are twice the key lengths of
common symmetric-key block ciphers — this is because exhaustive key search of a k-bit
block cipher is expected to take roughly the same time as the solution of an instance of the
elliptic curve discrete logarithm problem using Pollard’s rho algorithm for an appropriately-
selected elliptic curve over a finite field whose order has bitlength 2k. The correspondence

between symmetric cipher key lengths and field sizes is given in Table 1.

Symmetric cipher Example Bitlength of p  Dimension m of
key length algorithm in prime field F,, binary field Fom

80 SKIPJACK [67] 192 163

112 Triple-DES 224 233

128 AES Small [66] 256 283

192 AES Medium [66] 384 409

256 AES Large [66] 521 571

Table 1: Recommended field sizes for U.S. Federal Government use.

(ii) For prime fields F,, the prime moduli p are of a special type (called generalized Mersenne
numbers) for which modular multiplication can be carried out more efficiently than in general,

see [65] and [89].
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(iii) For binary fields Fom, m was chosen so that there exists a Koblitz curve of almost prime order
over Fom. Since #FE(Fy) divides #E(Fam) whenever [ divides m, this requirement imposes
the condition that m be prime.

REcOMMENDED ELLIPTIC CURVES. There are three types of elliptic curves:
1. Random elliptic curves over F,,.
2. Koblitz elliptic curves over Fom.

3. Random elliptic curves over Fom.

The parameters of these curves are presented in §10.2.1, §10.2.2 and §10.2.3. In these subsections,
parameters are either given in decimal form or in hexadecimal form preceded by ‘0x’. For the
binary fields, the additive and multiplicative identities are simply denoted by 0 and 1. A method

for converting between polynomial and normal basis representations for Fom is given in §10.2.4.

10.2.1 Random Elliptic Curves Over F,

The following parameters are given for each elliptic curve:

p The order of the prime field F,,.

seedE  The seed used to randomly generate the coefficients of the elliptic curve using Algo-
rithm 1 of §5.2.1.
The output of SHA-1 in Algorithm 1.

a,b The coefficients of the elliptic curve y?> = 2 + az + b satisfying rb? = a® mod p. The
selection @ = —3 was made for reasons of efficiency; see IEEE P1363 [30].

zg, Yo The 2 and y coordinates of the base point G.

n The (prime) order of G.

h The co-factor.

Curve P-192 (p = 2192 — 264 _ 1)

P 6277101735386680763835789423207666416083908700390324961279
seedE 0x 3045ae6f c8422f64 ed579528 d38120ea e12196d5

r 0x 3099d2bb bfcb2538 542dcdS5f b0O78b6ef 5f3d6fe2 c745de65

a -3

b 0x 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9Db1

xG 0x 188daB80e b03090f6 7cbf20eb 43a18800 f4ffOafd 82ff1012
yG 0x 07192b95 ffc8da78 631011led 6b24cddb 73f977al 1e794811

n 6277101735386680763835789423176059013767194773182842284081
h 1
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26959946667150639794667015087019630673557916260026308143510066298881

Ox 5b056c7e 11dd68f4 0469ee7f 3c7a7d74 £7d12111 65064031 218291fb

0x b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 27003943 2355ffb4
0x b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56¢21122 343280d6 115c1d21
0x bd376388 bb5f723fb 4c22dfe6 cd4375a0 5a074764 44458199 85007e34
269599466671506397946670150870196259040457807714424391721682722368061

11579208921035624876269744694940757353008614341529031419553363130886709785

0x 7efbal66 2985be94 03cb055¢c 75d4f7e0 ceB8dB84a9 cblld4abc af317768 0104fald

0x 5ac635d8 aa3a93e7 b3ebbdb5 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b
Ox 6b17d1f2 e12c4247 f8bcebeb 63a440f2 77037d81 2deb33a0 f4a13945 d898c296
0x 4fe342e2 fela7f9b 8ee7ebda 7c0f9el16 2bce3357 6b315ece cbb64068 37bf51f5
11579208921035624876269744694940757352999695522413576034242225906106851204

39402006196394479212279040100143613805079739270465446667948293404245721771

O0x 79d1e655 £868f02f ff48dcde e14151dd b80643c1 406d0cal O0dfe6fch 2009540a

0x b3312fa7 e23ee7e4 988e056b e3£f82d19 181d9c6e fe814112 0314088f 5013875a

0x aa87ca22 be8b0537 8eblc7le £320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38

O0x 3617deda 96262c6f 5d9e98bf 9292dc29 £8f41dbd 289a147c e9da3113 b5£f0b8cO

Curve P-224 (p = 2224 — 2% 1 1)
p
seedE 0x bd713447 99d5c¢7fc dc45b59f a3b9ab8f 6a948bch
r
a -3
b
xG
yG
n
h 1
Curve P-256 (p = 2756 — 2724 4 2192 4 996 _ 1)
p
3951
seedE 0x ¢c49d3608 86e70493 6a6678el 139d26b7 819£f7e90
r
a -3
b
xG
yG
n
4369
h 1
Curve P-384 (p = 2384 — 2128 _ 296 4 232 _ 1)
p
496870329047266088258938001861606973112319
seedE O0x a335926a a319a27a 1d00896a 6773a482 Tacdac73
r
495e8042 eabf744f 6e184667 cc722483
a -3
b
c656398d 8a2ed19d 2a85c8ed d3eclaef
xG
5502f25d bf55296¢ 3a545e38 72760ab7
yG

0a60blce 1d7e819d 7a431d7c¢ 90ealebf
39402006196394479212279040100143613805079739270465446667946905279627659399
113263569398956308152294913554433653942643
1
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Curve P-521 (p = 2521 — 1)

P 68647976601306097149819007990813932172694353001433054093944634591855431833
97656052122559640661454554977296311391480858037121987999716643812574028291
1150571561

seedE 0x d09e8800 291cb853 96¢cB6717 393284aa alOdab4dba

r Ox Ob4 8bfabf42 0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8 £6d0edb3

Tbd6bb533 28100051 8e19f1b9 ffbeOfe9 edB8a3c22 00b8f875 e€523868c 70clebbf
55bad637

a -3

b Ox 051 953eb961 8elc9alf 929a21a0 b68540ee a2da725b 99b315f3 b8bL48991

8ef109el 56193951 ec7e937b 1652cObd 3bb1bf07 3573df88 3d2c34f1 ef4b51fd4
6b503£00

xG Ox 0c6 858e06b7 0404e9cd 9e3ecbb6 2395b442 9¢648139 0653fb521 £828af60

6b4d3dba al4bbe77 efe75928 feldcl127 a2ffa8de 3348b3cl 856a429b f97e7e31
c2ebbd66

yG Ox 118 39296a78 9a3bc004 5c8abfb4 2c¢7dibd9 98£54449 579b4468 17afbdl7

273e662c 97ee7299 5ef42640 c550b901 3fad0761 353c7086 a272c240 88bed476
9fd16650

n 68647976601306097149819007990813932172694353001433054093944634591855431833
97655394245057746333217197532963996371363321113864768612440380340372808892
707005449

h 1

10.2.2 Koblitz Elliptic Curves Over Fyn

The parameters of the (same) Koblitz curve and base point are given in both normal basis repre-
sentation (indicated by FR) and in polynomial basis representation (indicated by FR2). A method
for converting between the two representations is given in §10.2.4. The following parameters are
given for each Koblitz curve:

m The extension degree of the binary field Faym.

FR An indication of the representation used for the elements of Fom in accordance
with ANSI X9.62 (see §3.2).

a,b The coefficients of the elliptic curve y* + 2y = 23 + az? + b.

za, Ya The z and y coordinates of the base point G.

n The (prime) order of G.

h The co-factor.

FR2 An indication of the second representation used for the elements of Fom in accor-
dance with ANSI X9.62.

a2, b2 The coeflicients of the (same) elliptic curve using representation FR2.

G2, yg2 The 2 and y coordinates of the (same) base point G using representation FR2.
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Curve K-163

m 163

FR Gaussian Normal Basis, T=4

a 1

b 1

xG 0x 0 5679b353 caad46825 fea2d371 3bad4b0da 0c2a4b41l
yG Ox 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2
n 5846006549323611672814741753598448348329118574063
h 2

FR2 Polynomial basis with reduction polynomial f(x) = x"163 + x°7 + x"6 + x"3 + 1
a2 1

b2 1

xG2 0x 2 fel3c053 7bbcllac aal07d793 ded4ebdbe 5c94eee8
yG2 O0x 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Curve K-233

m 233

FR Gaussian Normal Basis, T=2

a 0

b 1

xG Ox 0fd e76d9dcd 26e643ac 26f1aa90 12212978 4b71fc07 22b2d056 14d650b3
yG Ox 064 3e317633 155c9e04 47baB8020 a3c43177 450ee036 d6335014 34cac978
n  3450873173395281893717377931138512760570940988862252126328087024741343
h 4

FR2 Polynomial basis with reduction polynomial f(x) = x"233 + x°74 + 1

a2z o0

b2 1

xG2 O0x 172 32baB853a 7e731lafl 29f22ff4 149563a4 19c26bf5 0a4c9d6e efadb6126
yG2 0x 1db 537dece8 19b7£70f 555a67c4 27a8cd9b f18aeb9b 56e0c110 56faebal

Curve K-283

m 283

FR Gaussian Normal Basis, T=6

a 0

b 1

xG 0x 3ab9593 £8db09fc 188f1d7c 4ac9fcc3 e57fcd3b db15024b 212¢7022 9debfcd9
2eb0eab0

yG O0x 2118c47 55e7345c d8f603ef 93b98b10 6feB8854f feb9a3b3 04634cc8 3a0e759f
0c2686b1

n 388533778445145814183892381364703781328481173379306132429587499752981582

9704422603873
h 4

FR2 Polynomial basis with reduction polynomial f(x) = x°283 + x"12 + x°7 + x5 + 1
a2 o0

b2 1

xG2 0x 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a 16876913 bOc2ac24
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yG2

58492836
0x 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 8184698 4596236 4e341161
77dd2259

Curve K-409

m
FR
a
b
xG

yG

FR2
a2
b2
xG2

yG2

409

Gaussian Normal Basis, T=4

0

1

0x 1b559¢7 cba2422e 3affel33 43e808b5 5e012d72 6¢calb7eb6 ab3aecafb cle3a98e
10caOfcf 98350c¢3b 7£89a975 4a8eldcO 713cec4da

Ox 16d8c42 052f07e7 713e7490 eff318ba labd6fef 8ab433c8 94b24fbc 817aeb79
852496fb ee803a47 bcB8a2038 78ebflc4 99afd7d6

33052798439512429947595765401638551991420234148214060964232439502288071128

9249191050673258457777458014096366590617731358671

4

Polynomial basis with reduction polynomial f(x) = x°409 + x"87 + 1

0

1

Ox 060f05f 658f49c1 ad3abl89 0£f718421 0efd0987 e307c84c 27accfb8 f9f67cc2
c460189e bbaaaaB2 ee222ebl b35540cf €9023746

0x 1e36905 0b7c4e42 acbaldac bf04299c 3460782f 918ead427 e6325165 e9ealle3
dabf6c42 e9c¢b5215 aa9ca27a 5863ec48 d8e0286Db

Curve K-571

m
FR
a
b
xG

yG

FR2
a2
b2
xG2

yG2

B71

Gaussian Normal Basis, T=10

0

1

0x 04bb2db a418d0db 107adae0 03427ebd 7ccl39ac b465e593 4f0bea2a b2£3622b
c29b3d5b 9aa7alfd fd5d8beb6 6057c100 8e71e484 bcd98f22 bf847642 37673674
29ef2echb bc3ebef?

0x 44cbbb7 de20788d 2¢952d7b 56cf39bd 3e89b189 84bdi124e 7hlceff4 369dd8da
cB6ab9ebe 745df44d 8220ce22 aa2c852c fcbbef49 ebaa98bd 2483e331 80e04286
feaa2530 50caff60

19322687615086291723476759454659936721494636648532174993286176257257595711

44780212268133978522706711834706712800825351461273674974066617311929682421

617092503555733685276673

4

Polynomial basis with reduction polynomial f(x) = x"571 + x~10 + x°5 + x"2

0

1

Ox 26eb7a8 59923fbc 82189631 £8103fe4 ac9ca297 0012d5d4 60248048 01841ca4d
43709584 93b205e6 47da304d b4ceb08c bbdiba39 494776fb 988b4717 4dca88c7
€2945283 a01c¢8972

Ox 349dc80 7f4fbf37 4fd4aeade 3bca9b531 4ddb8cec 9f307ab4 ffc6lefc 006d8a2c
9d4979¢c0 ac44aea7 4fbebbb9 f772aedc b620b0la 7ba7aflb 320430c8 591984f6
Olcd4cl4 3efic7a3

+
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10.2.3 Random Elliptic Curves Over Fom

Each random elliptic curve over Fym was generated using Algorithm 3 of §5.2.2. The output
of SHA-1 was interpreted as an element of a binary field represented with a Gaussian normal
basis. The parameters of the (same) elliptic curve and base point are given in both normal basis
representation (indicated by FR) and in polynomial basis representation (indicated by FR2). A
method for converting between the two representations is given in §10.2.4. The following parameters
are given for each elliptic curve:

m The extension degree of the binary field Faym.

FR An indication of the representation used for the elements of Fom in accordance
with ANSI X9.62 (see §3.2).

seedE The seed used to randomly generate the coeflicients of the elliptic curve using
Algorithm 3 of §5.2.2.

a,b The coefficients of the elliptic curve y2 + zy = z° + az? + b.

za, Ya The z and y coordinates of the base point G.

n The (prime) order of G.

h The co-factor.

FR2 An indication of the second representation used for the elements of Fom in accor-
dance with ANSI X9.62.

a2, b2 The coeflicients of the (same) elliptic curve using representation FR2.

G2, yg2 The 2 and y coordinates of the (same) base point G using representation FR2.

Curve B-163

m 163

FR Gaussian Normal Basis, T=4

seedE 0x 85e25bfe 5¢86226¢c db12016f 7553f9d0 6932268

a 1

b 0x 6 645f3cac £1638e13 9c6cdil3e £61734fb ¢c9e3d9fDb
xG Ox 0 311103c1 7167564a ce77ccb0 9¢681£f88 6bab4ee8
yG 0x 3 33acl13c6 447f2e67 613bf700 9daf98c8 7bb50c7f
n 5846006549323611672814742442876390689256843201587

h 2

FR2 Polynomial basis with reduction polynomial £(x) = x"163 + x°7 + x"6 + x"3 + 1
a2 1

b2 0x 2 02601907 b8c953ca 1481ebl0 512f7874 4a3205fd

xG2  0x 3 fOebal62 86a2d57e a0991168 d4994637 e8343e36

yG2  0x 0 d51fbc6c 71a0094f a2cddb545 blicbcOc 79732411
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Curve

m
FR
seedE

xG
yG

FR2
a2
b2
xG2
yG2

Curve

FR
seedE

xG

yG

FR2
a2
b2
xG2

yG2

Curve

FR
seedE

B-233

233

Gaussian Normal Basis, T=2

0x 74d59ff0 7£f6b413d 0ealdb34 4b20a2db 049b50c3
1

0x 1a0 03e0962d 4f9aB8e40 7c904a95 38163adb 82521260 0c7752ad 52233279
0x 18b 863524b3 cdfefb94 £2784e0b 116faac5 4404bc91 62a363ba b84aldch
0x 049 25df77bd 8b8fflab ££519417 822bfedf 2bbd7526 44292c¢98 c7af6e02

69017463467905637874347558622770255565839812737345013555379383634485463
2

Polynomial basis with reduction polynomial f(x) = x"233 + x°74 + 1

1

0x 066 647edebc 332c7f8c 0923bb58 213b333b 20e9ce42 81fellbf 7d8f90ad
0x 0fa c9dfcbac 8313bb21 39f1bb75 b5fef65bc 391£f8b36 £8£8eb73 71£d558b
0x 100 6a08a419 03350678 e58528be bf8albef £867a7ca 36716f7e 01£81052
B-283

283

Gaussian Normal Basis, T=6

0x 77e2b073 70eb0£83 2a6dd5b6 2dfc88cd 06bb84b

1

0x 157261b 894739fb 5a13503f 55f0b3f1 0c560116 66331022 01138ccl 80c0206b
dafbcobil

0x 749468e 464ee468 634b21f7 £61cb700 70181766 bc36a236 4cb8906e 940948ea
a463c35d

0x 62968bd 3b489ach c9b859da 68475c31 Ebafcdcd ccd0dc90 5b70£624 46£49c05
2£49c08c¢

77706755689029162836778476272940756265696259243769048891091965267700442777

87378692871

2

Polynomial basis with reduction polynomial f(x) = x°283 + x~12 + x°7 + x°5

1

0x 27b680a c8b8596d abad4af8a 19a0303f ca97fd76 45309fa2 ab81485a £6263e31
3b79a2f5

0x b5£f93925 8db7dd90 e1934f8c 70bOdfec 2eed25b8 557eac9c 80e2e198 f8cdbecd
86012053

Ox 3676854 fe24141c b98fe6d4 b20d02b4 516££702 350eddb0 826779c8 13f£0df45
be8112f4

B-409

409

Gaussian Normal Basis, T=4

0x 4099b5a4 57f9d69f 79213d09 4cdbcd4d 42622101

1

0x 124d065 1c¢3d3772 f7f5alfe 6e715559 e2129bdf a04d52f7 b6ac7c53 2cf0ed06
£610072d 88ad2fdc c50c6fde 72843670 £8b3742a

+
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xG

yG

FR2
a2
b2

xG2

yG2

Curve

FR
seedE

xG

yG

FR2
a2
b2

xG2

yG2

0x Oceacbc
318¢c96£0
199d64b

49142691

0x

2

9f475767 d8e69f3b bdfab398 13685262 bcacf22b 84c7b6dd 981899e7
761£f77c6 02c016ce d7cb48de 830d708f
a8f089c6 db0eOb61 e80bb959 34afdOca f2e8be76 dicbe9af fc7476df
ad303902 88aal9bc c59¢c1573 aa3c009a
66105596879024859895191530803277103982840468296428121928464879830415777482
737480520814372376217911096597986728836656752677 1

Polynomial basis with reduction polynomial f(x)

1
O0x 021abc2
a9a197b2
1544860
dc255a86
061bict

38514f1f

0x

0x

B-571

571

c8eeffeb
72822f6¢
d088ddb3
8a118051
ab6bebf3
df4b4£f40

5¢c4b9a75b
db7abbaa
496b0c60
5603aeab
2bbfa783
d2181b36

Gaussian Normal Basis, T=10
0x 2aa058f7 3a0e33ab 486b0f61

1

0x 3762d40d
26101a1d
67f01ca8
0735e03
d361089f
624e2015
04a3642
4726beb7

6d3acbbé

0x

0x

47116006
£fb377411
85c74777
5def5925
0a7a0247
df1662a8
0572616¢
9855e812
b01a4a97

179da356
5£586623

cc33173e
al84elc?

df7e606f
de7ecbch

3b7b476b
4f50ae31
64756260
60794e54
24ed106a
81c364ba

0410c53a

88eeacct
£75£0000

b2a8ce77
0d417866

ccadaect
00b4576a

7fd6422e
Tb13545f
441cdeda
bb7996a7
7636b9chH
0273c706

7£132310

591abcde
1ce61198

67522b46
e0felfeb

c3b76dab
24628048

= x7409 + x787 + 1

£1£3dd67 4761fa99

£1771d4d bO1ffebb

a7bd198d 0158aa4f

a7500011 8d9608ch
3c1275fa 31f5bcof

6d278b65 0a291612
0f£f8f2f3 £9176418

0eb1248d d03fbdfc
b6a72d88 0062eed0

d6ac27c8

34e59703

5488d08f

91324434
4belal0f4

7dfea9d?2
£97d117e

9cd3242c¢c
dd34b109

38645375230172583446953518909319873442989273297064349986572352514515191422
89560424536143999389415773083133881121926944486246872462816813070234528288
303332411393191105285703

2

Polynomial basis with reduction polynomial f(x)

1

0x 2f40e7e
84ffabbd
Tffeff7f
303001d
bde53950
ele7769c
37bf273
84423e43

124827af

0x

0x

2221£295
8efab933
2955727a
34185629
£4c0d4293
8eec2d19
42da639b
bab08ab7
1b8ac1bb

de297117
2be7ad67

6¢c16¢c0d4
cdd711a3

6dccfffe
6291af8f

b7£3d62f
56a66e29

0d3cd775
5b67fb14

b73d69d7
461bb2a8

5c6a97ff
4afd185a

0a93d1d2
99ae6003

8c6¢c27ab
b3531d2f

cb8ceffl cdbBba8ce
78ff12aa 520e4de7

955fa80a abf40fc8
86141139 4abfa3b4

009cbbca 1980£853
0485c19b 16e2f151

x"571 + x710 + x°5 + x72

4a9a18ad
39bacalc

db7b2abd
c850d4927

3921e8a6
6e23dd3c

+
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10.2.4 Converting Between Polynomial and Normal Basis Representations

This subsection describes one method, utilizing multiplication by a change-of-basis matrix, for
converting the elements of Fom represented with respect to a particular polynomial basis, to the
elements of Fom represented with respect to a particular normal basis, and vice versa. The change-
of-basis matrices for converting between the polynomial basis and normal basis representations of
the fields Fyie3, Fy23s, Fg2s3, Faaoe and Fysri given in §10.2.2 and §10.2.3 are presented. There are
other methods available for performing the conversions; e.g., see Kaliski and Yin [38].

NorMAL BAsis To PoLyNOMIAL Basis CONVERSION. Suppose that a is an element of the field
Fom. Let a be its bit string representation with respect to a given normal basis, and let @ be its
bit string representation with respect to a given polynomial basis. Then @ can be derived from «a
via the matrix computation @ = aA, where A is an m X m binary matrix. The matrix A4, which
depends only on the bases, can be computed easily given its top row R as follows. Let 3 be the
element of Fam whose representation with respect to the polynomial basis is E. Then the rows
of A, from top to bottom, are the bit strings representing the elements ﬁ,ﬁ2,ﬁ22, . ,ﬁ2m_1 with
respect to the polynomial basis.

The following gives the top row R for each conversion from the normal bases indicated by FR
in §10.2.2 and §10.2.3 to the polynomial bases indicated by FR2 in §10.2.2 and §10.2.3.

m=163 0x 7 15169¢10 9c612e39 0d347c74 8342bcd3 b02albef
m=233 0x 149 9e398ach d79e3685 59b35cad 9bb7305d a6c0390b cf9e2300 253203¢c9

m=283 0x 31le0ed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bcld792e ba9867fc
7b317299

m=409 0x 0dfa06b e206aa97 b7a41fff bObOcE5f 8£f048062 fbe8381b 4248adf9 2912ccc8
e3f91a24 elcfb395 0532b988 971c2304 2e85708d

m=571 0x 452186b bf5840a0 bcf8c9f0 2ab4efal 4e813b43 c3d41496 06c4d27b 487bf107
393c8907 £79d9778 beb35ee8 7467d328 8274caeb dabceOba ebdcabcf 3c3044bd
4372232f 2cla27c4

PoryNoMiaL Basis To NORMAL BAsis CONVERSION. Suppose that a is an element of the field
Fom. Let a be its bit string representation with respect to a given normal basis, and let @ be its
bit string representation with respect to a given polynomial basis. Then a can be derived from @
via the matrix computation ¢ = @B, where B is an m X m binary matrix. The matrix B, which
depends only on the bases, can be computed easily given its second-to-last row S as follows. Let 3
be the element of Fom whose representation with respect to the normal basis is S. Then the rows
of B, from top to bottom, are the bit strings representing the elements g™~ gm=2 ... 32 3,1
with respect to the normal basis.

The following gives the second-to-last row S for each conversion from the polynomial bases
indicated by FR2 in §10.2.2 and §10.2.3 to the normal bases indicated by FR in §10.2.2 and §10.2.3.



The Elliptic Curve Digital Signature Algorithm (ECDSA) 46

m=163 0x 3 el173bfaf 3a86434d 883a2918 a489ddbd 69fe84el
m=233 0x Obe 19b89595 28bbc490 038f4bc4 da8bdfcl ca36bb05 853fd0ed 0Oae200ce

m=283 0x 3347f17 521fdabc 62ec1551 acf156fb Obceb855 £174d4cl 7807511c 9£745382
add53bc3

m=409 0x 0eb00f2 ea95fd6c 64024e7f 0bL68b81f 5ff8a467 acc2b4c3 b9372843 6265c7ff
a06d896c ae3a7e31 e295ec30 3eb9f769 de78befb

m=571 0x 7940ffa ef996513 4d59dcbf ebbf239b ed4fedbdl 05959c5d 4d942ffd 46ea3bf3
e3cdblOel 04a2aal0l cef30a3a 49478011 196bfb43 c55091b6 1174d7c0 8d0cdd6l
3bf6748a bad972a4

11 Conclusions

ECDSA is now an ANSI, IEEE, NIST and ISO standard and is being standardized by several other
standards organizations. This paper described the ANSI X9.62 ECDSA, presented rationale for
some design decisions, and discussed related security, implementation, and interoperability issues.
We hope that this document contributes to an increased understanding of the properties of ECDSA,
and facilitates its use in practice.
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