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Abstract

The Elliptic Curve Digital Signature Algorithm �ECDSA� is the elliptic curve analogue of the Digi�

tal Signature Algorithm �DSA�� It was accepted in ���� as an ANSI standard� and was accepted in

���� as IEEE and NIST standards� It was also accepted in ���	 as an ISO standard� and is under

consideration for inclusion in some other ISO standards� Unlike the ordinary discrete logarithm

problem and the integer factorization problem� no subexponential�time algorithm is known for the

elliptic curve discrete logarithm problem� For this reason� the strength�per�key�bit is substantially

greater in an algorithm that uses elliptic curves� This paper describes the ANSI X��
� ECDSA�

and discusses related security� implementation� and interoperability issues�

Keywords� Signature schemes� elliptic curve cryptography� DSA� ECDSA�
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� Introduction

The Digital Signature Algorithm �DSA� was speci�ed in a U�S� Government Federal Information

Processing Standard �FIPS� called the Digital Signature Standard �DSS �
���� Its security is based

on the computational intractability of the discrete logarithm problem �DLP� in prime�order sub�

groups of Z�p�

Elliptic curve cryptosystems �ECC� were invented by Neal Koblitz ��� and Victor Miller ����

in ��	�� They can be viewed as elliptic curve analogues of the older discrete logarithm �DL�

cryptosystems in which the subgroup of Z�p is replaced by the group of points on an elliptic curve

over a �nite �eld� The mathematical basis for the security of elliptic curve cryptosystems is the

computational intractability of the elliptic curve discrete logarithm problem �ECDLP��

Since the ECDLP appears to be signi�cantly harder than the DLP� the strength�per�key�bit

is substantially greater in elliptic curve systems than in conventional discrete logarithm systems�

Thus� smaller parameters can be used in ECC than with DL systems but with equivalent levels of

security� The advantages that can be gained from smaller parameters include speed �faster computa�

tions� and smaller keys and certi�cates� These advantages are especially important in environments

where processing power� storage space� bandwidth� or power consumption is constrained�

The Elliptic Curve Digital Signature Algorithm �ECDSA� is the elliptic curve analogue of the

DSA� ECDSA was �rst proposed in ���� by Scott Vanstone ��� in response to NIST�s �National

Institute of Standards and Technology� request for public comments on their �rst proposal for DSS�

It was accepted in ���	 as an ISO �International Standards Organization� standard �ISO �			����

accepted in ���� as an ANSI �American National Standards Institute� standard �ANSI X��
��� and

accepted in ���� as an IEEE �Institute of Electrical and Electronics Engineers� standard �IEEE

P��
�� and a FIPS standard �FIPS �	
���� It is also under consideration for inclusion in some other

ISO standards� In this paper� we describe the ANSI X��
� ECDSA� present rationale for some of

the design decisions� and discuss related security� implementation� and interoperability issues�

The remainder of this paper is organized as follows� In x�� we review digital signature schemes
and the DSA� A brief tutorial on �nite �elds and elliptic curves is provided in x� and x� respec�
tively� In x�� methods for domain parameter generation and validation are considered� while x

discusses methods for key pair generation and public key validation� The ECDSA signature and

veri�cation algorithms are presented in x�� The security of ECDSA is studied in x	� Finally� some
implementation and interoperability issues are considered in x� and x���

� Digital Signature Schemes

��� Background

Digital signature schemes are designed to provide the digital counterpart to handwritten signatures

�and more�� A digital signature is a number dependent on some secret known only to the signer �the

signer�s private key�� and� additionally� on the contents of the message being signed� Signatures

must be veri�able � if a dispute arises as to whether an entity signed a document� an unbiased

third party should be able to resolve the matter equitably� without requiring access to the signer�s



The Elliptic Curve Digital Signature Algorithm �ECDSA� �

private key� Disputes may arise when a signer tries to repudiate a signature it did create� or when

a forger makes a fraudulent claim�

This paper is concerned with asymmetric digital signatures schemes with appendix� �Asym�

metric� means that each entity selects a key pair consisting of a private key and a related public

key� The entity maintains the secrecy of the private key which it uses for signing messages� and

makes authentic copies of its public key available to other entities which use it to verify signatures�

�Appendix� means that a cryptographic hash function is used to create a message digest of the

message� and the signing transformation is applied to the message digest rather than to the message

itself�

Security� Ideally� a digital signature scheme should be existentially unforgeable under chosen�

message attack� This notion of security was introduced by Goldwasser� Micali and Rivest �����

Informally� it asserts that an adversary who is able to obtain entity A�s signatures for any messages

of its choice is unable to successfully forge A�s signature on a single other message�

Applications� Digital signature schemes can be used to provide the following basic cryptographic

services� data integrity �the assurance that data has not been altered by unauthorized or unknown

means�� data origin authentication �the assurance that the source of data is as claimed�� and non�

repudiation �the assurance that an entity cannot deny previous actions or commitments�� Digital

signature schemes are commonly used as primitives in cryptographic protocols that provide other

services including entity authentication �e�g�� FIPS ��
 �
�� ISO�IEC ���	�� ����� and Blake�Wilson

and Menezes ����� authenticated key transport �e�g�� Blake�Wilson and Menezes ���� ANSI X��
� ���

and ISO�IEC ������� ������ and authenticated key agreement �e�g�� ISO�IEC ������� ����� Di�e�

van Oorschot and Wiener ��
�� and Bellare� Canetti and Krawczyk �	���

Classification� The digital signature schemes in use today can be classi�ed according to the

hard underlying mathematical problem which provides the basis for their security�

�� Integer Factorization �IF� schemes� which base their security on the intractability of the inte�

ger factorization problem� Examples of these include the RSA ���� and Rabin ��� signature

schemes�

�� Discrete Logarithm �DL� schemes� which base their security on the intractability of the �or�

dinary� discrete logarithm problem in a �nite �eld� Examples of these include the ElGamal

��	�� Schnorr ����� DSA �
��� and Nyberg�Rueppel �
	� 
�� signature schemes�

�� Elliptic Curve �EC� schemes� which base their security on the intractability of the elliptic

curve discrete logarithm problem�

��� The Digital Signature Algorithm �DSA�

The DSA was proposed in August ���� by the U�S� National Institute of Standards and Technology

�NIST� and was speci�ed in a U�S� Government Federal Information Processing Standard �FIPS

�	
 �
��� called the Digital Signature Standard �DSS�� The DSA can be viewed as a variant of the

ElGamal signature scheme ��	�� Its security is based on the intractability of the discrete logarithm

problem in prime�order subgroups of Z�p�
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DSA Domain Parameter Generation� Domain parameters are generated for each entity in a

particular security domain� �See also the note below on secure generation of parameters��

�� Select a �
��bit prime q and a ����bit prime p with the property that q j p� ��
�� �Select a generator g of the unique cyclic group of order q in Z�p��

Select an element h �Z�p and compute g � h�p����q mod p� �Repeat until g �� ���
�� Domain parameters are p� q and g�

DSA Key Pair Generation� Each entity A in the domain with domain parameters �p� q� g� does

the following�

�� Select a random or pseudorandom integer x such that � � x � q � ��
�� Compute y � gx mod p�

�� A�s public key is y� A�s private key is x�

DSA Signature Generation� To sign a message m� A does the following�

�� Select a random or pseudorandom integer k� � � k � q � ��
�� Compute X � gk mod p and r � X mod q� If r � � then go to step ��

�� Compute k�� mod q�

� Compute e � SHA���m��

�� Compute s � k��fe� xrg mod q� If s � � then go to step ��

� A�s signature for the message m is �r� s��

DSA Signature Verification To verify A�s signature �r� s� on m� B obtains authentic copies of

A�s domain parameters �p� q� g� and public key y and does the following�

�� Verify that r and s are integers in the interval ��� q� ���
�� Compute e � SHA���m��

�� Compute w � s�� mod q�

� Compute u� � ew mod q and u� � rw mod q�

�� Compute X � gu�yu� mod p and v � X mod q�


� Accept the signature if and only if v � r�

Security Analysis� Since r and s are each integers less than q� DSA signatures are ��� bits in

size� The security of the DSA relies on two distinct but related discrete logarithm problems� One

is the discrete logarithm problem in Z�p where the number �eld sieve algorithm �see Gordon ����

and Schirokauer ��	�� applies� this algorithm has a subexponential running time� More precisely�

the expected running time of the algorithm is

O
�
exp
�
�c� o�����lnp�����ln ln p����

��
� ���
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where c � ������ and lnn denotes the natural logarithm function� If p is a ����bit prime� then
the expression ��� represents an infeasible amount of computation� thus the DSA using a ����bit

prime p is currently not vulnerable to this attack� The second discrete logarithm problem works to

the base g� given p� q� g� and y� �nd x such that y � gx �mod p�� For large p �e�g�� ����bits�� the

best algorithm known for this problem is Pollard�s rho method ����� and takes aboutp
�q�� ���

steps� If q � ����� then the expression ��� represents an infeasible amount of computation� thus the
DSA is not vulnerable to this attack� However� note that there are two primary security parameters

for DSA� the size of p and the size of q� Increasing one without a corresponding increase in the

other will not result in an e�ective increase in security� Furthermore� an advance in algorithms for

either one of the two discrete logarithm problems could weaken DSA�

Secure Generation of Parameters� In response to some criticisms received on the �rst draft

�see Rueppel et al� ��
� and Smid and Branstad �	���� FIPS �	
 speci�ed a method for generating

primes p and q �veri�ably at random�� This feature prevents an entity �e�g�� a central authority

generating domain parameters to be shared by a network of entities� from intentionally constructing

�weak� primes p and q for which the discrete logarithm problem is relatively easy� For further

discussion of this issue� see Gordon ��
�� FIPS �	
 also speci�es two methods� based on DES

and SHA��� for pseudorandomly generating private keys x and per�message secrets k� FIPS �	


mandates the use of these algorithms� or any other FIPS�approved security methods�

� Finite Fields

We provide a brief introduction to �nite �elds� For further information� see Chapter � of Koblitz

���� or the books by McEliece ���� and Lidl and Niederreitter �����

A �nite �eld consists of a �nite set of elements F together with two binary operations on F �

called addition and multiplication� that satisfy certain arithmetic properties� The order of a �nite

�eld is the number of elements in the �eld� There exists a �nite �eld of order q if and only if q is

a prime power� If q is a prime power� then there is essentially only one �nite �eld of order q� this

�eld is denoted by Fq� There are� however� many ways of representing the elements of Fq� Some

representations may lead to more e�cient implementations of the �eld arithmetic in hardware or

in software�

If q � pm where p is a prime and m is a positive integer� then p is called the characteristic

of Fq and m is called the extension degree of Fq� Most standards which specify the elliptic curve

cryptographic techniques restrict the order of the underlying �nite �eld to be an odd prime �q � p�

or a power of � �q � �m�� In x���� we describe the elements and the operations of the �nite �eld
Fp� In x���� elements and the operations of the �nite �eld F�m are described� together with two
methods for representing the �eld elements� polynomial basis representations and normal basis

representations�
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��� The Finite Field Fp

Let p be a prime number� The �nite �eld Fp� called a prime �eld� is comprised of the set of integers

f�� �� �� � � � � p� �g

with the following arithmetic operations�

� Addition� If a� b � Fp� then a� b � r� where r is the remainder when a � b is divided by p

and � � r � p� �� This is known as addition modulo p�

� Multiplication� If a� b � Fp� then a � b � s� where s is the remainder when a � b is divided
by p and � � s � p� �� This is known as multiplication modulo p�

� Inversion� If a is a non�zero element in Fp� the inverse of a modulo p� denoted a��� is the

unique integer c � Fp for which a � c � ��

Example � �The �nite �eld F��� The elements of F�� are f�� �� �� � � � � ��g� Examples of the arith�
metic operations in F�� are�

� �� � �� � ��
� 	 � � � ��
� 	�� � ��

��� The Finite Field F�m

The �eld F�m � called a characteristic two �nite �eld or a binary �nite �eld� can be viewed as a

vector space of dimension m over the �eld F� which consists of the two elements � and �� That is�

there exist m elements ��� ��� � � � � �m�� in F�m such that each element � � F�m can be uniquely
written in the form�

� � a��� � a��� � � � �� am���m��� where ai � f�� �g�

Such a set f��� ��� � � � � �m��g is called a basis of F�m over F�� Given such a basis� a �eld element
� can be represented as the bit string �a�a� � � �am���� Addition of �eld elements is performed by

bitwise XOR�ing the vector representations� The multiplication rule depends on the basis selected�

There are many di�erent bases of F�m over F�� Some bases lead to more e�cient software or

hardware implementations of the arithmetic in F�m than other bases� ANSI X��
� permits two

kinds of bases� polynomial bases �discussed in x������ and normal bases �discussed in x�������

����� Polynomial Basis Representations

Let f�x� � xm� fm��x
m��� � � �� f�x�� f�x� f� �where fi � f�� �g for i � �� �� � � � � m� �� be an

irreducible polynomial of degree m over F�� That is� f�x� cannot be factored as a product of two

polynomials over F�� each of degree less than m� Each such polynomial f�x� de�nes a polynomial

basis representation of F�m � which is described next� f�x� is called the reduction polynomial�
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Field Elements� The �nite �eld F�m is comprised of all polynomials over F� of degree less than

m�

F�m � fam��x
m�� � am��x

m�� � � � �� a�x� a� � ai � f�� �gg�

The �eld element am��x
m�� � am��x

m�� � � � � � a�x � a� is usually denoted by the bit string

�am��am�� � � � a�a�� of length m� so that

F�m � f�am��am�� � � �a�a�� � ai � f�� �gg�

Thus the elements of F�m can be represented by the set of all binary strings of length m� The

multiplicative identity element ��� is represented by the bit string ��� � � ����� while the additive

identity element ��� is represented by the bit string of all ��s�

Field Operations� The following arithmetic operations are de�ned on the elements of F�m when

using a polynomial basis representation with reduction polynomial f�x��

� Addition� If a � �am��am�� � � � a�a�� and b � �bm��bm�� � � � b�b�� are elements of F�m �

then a � b � c � �cm��cm�� � � � c�c��� where ci � �ai � bi� mod �� That is� �eld addition is

performed bitwise�

� Multiplication� If a � �am��am�� � � �a�a�� and b � �bm��bm�� � � � b�b�� are elements of

F�m � then a � b � r � �rm��rm�� � � �r�r��� where the polynomial rm��x
m�� � rm��x

m�� �

� � �� r�x � r� is the remainder when the polynomial

�am��x
m�� � am��x

m�� � � � �� a�x � a�� � �bm��x
m�� � bm��x

m�� � � � �� b�x� b��

is divided by f�x� over F��

� Inversion� If a is a non�zero element in F�m � the inverse of a� denoted a
��� is the unique

element c � F�m for which a � c � ��

Example � �A polynomial basis representation of the �nite �eld F��� Let f�x� � x��x�� be the

reduction polynomial� Then the �
 elements of F�� are�

� ������ � ������ x ������ x� � ������

x� ������ x� � � ������ x� � x ������ x� � x� � ������

x� ������ x� � � ������ x� � x ������ x� � x� � ������

x� � x� ������ x� � x� � � ������ x� � x� � x ������ x� � x� � x� � ������

Examples of the arithmetic operations in F�� are�

� ������� ������ � �������
� ������ � ������ � ������ since �x� � x� � �� � �x� � �� � x� � x� � x� � � and �x� � x� � x� �

�� mod �x� � x� �� � x� � x� � x� ��

� �������� � �������
The element � � x � ������ is a generator of F��� since its order is �� as the following calculations

show�
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�� � ������ �� � ������ �� � ������ �� � ������ �� � ������

�� � ������ �	 � ������ �
 � ������ �� � ������ ��� � ������

��� � ������ ��� � ������ ��� � ������ ��� � ������ ��� � �������

Selecting a Reduction Polynomial� A trinomial over F� is a polynomial of the form xm�xk�

�� where � � k � m��� A pentanomial over F� is a polynomial of the form xm�xk��xk��xk����

where � � k� � k� � k� � m��� ANSI X��
� speci�es the following rules for selecting the reduction
polynomial for representing the elements of F�m �

�� If there exists an irreducible trinomial of degree m over F�� then the reduction polynomial

f�x� must be an irreducible trinomial of degree m over F�� To maximize the chances for

interoperability� ANSI X��
� recommends that the trinomial used should be xm � xk � � for

the smallest possible k�

�� If there does not exist an irreducible trinomial of degree m over F�� then the reduction

polynomial f�x� must be an irreducible pentanomial of degree m over F�� To maximize the

chances for interoperability� ANSI X��
� recommends that the pentanomial used should be

xm�xk��xk��xk��� chosen according to the following criteria�� �i� k� is as small as possible�

�ii� for this particular value of k�� k� is a small as possible� and �iii� for these particular values

of k� and k�� k� is as small as possible�

����� Normal Basis Representations

Normal Bases� A normal basis of F�m over F� is a basis of the form f�� ��� ���� � � � � ��m��g� where
� � F�m � Such a basis always exists� Any element a � F�m can be written as a �

Pm��
i�� ai�

�i �

where ai � f�� �g� Normal basis representations have the computational advantage that squaring an
element can be done very e�ciently �see Field Operations below�� Multiplying distinct elements�

on the other hand� can be cumbersome in general� For this reason� ANSI X��
� speci�es that

Gaussian normal bases be used� for which multiplication is both simpler and more e�cient�

Gaussian Normal Bases� The type of a GNB is a positive integer measuring the complexity of

the multiplication operation with respect to that basis� Generally speaking the smaller the type�

the more e�cient the multiplication� For a given m and T � the �eld F�m can have at most one

GNB of type T � Thus it is proper to speak of the type T GNB of F�m � See Mullin et al� ���� and

Ash� Blake and Vanstone ��� for further information on GNBs�

Existence of Gaussian Normal Bases� A Gaussian normal basis �GNB� exists whenever m

is not divisible by 	� Let m be a positive integer not divisible by 	� and let T be a positive integer�

Then a type T GNB for F�m exists if and only if p � Tm � � is prime and gcd�Tm�k�m� � ��

where k is the multiplicative order of � modulo p�

�Actually� ANSI X���� recommends the following criteria for selecting the pentanomial� �i� k� is as small as

possible� �ii� for this particular value of k�� k� is a small as possible� and �iii� for these particular values of k� and k��

k� is as small as possible� However� the ANSI X�F	 committee agreed in April 	��� to change this recommendation

in a forthcoming revision of ANSI X���� to the one given above in order to be consistent with the IEEE P	
�
 and

FIPS 	���� recommendations�



The Elliptic Curve Digital Signature Algorithm �ECDSA� �


Field Elements� If f�� ��� ���� � � � � ��m��g is a normal basis of F�m over F�� then the �eld element
a �

Pm��
i�� ai�

�i is represented by the binary string �a�a� � � � am��� of length m� so that

F�m � f�a�a� � � � am��� � ai � f�� �gg�

The multiplicative identity element ��� is represented by the bit string of all ��s� while the additive

identity element ��� is represented by the bit string of all ��s�

Field Operations� The following arithmetic operations are de�ned on the elements of F�m when

using a GNB of type T �

� Addition� If a � �a�a� � � �am��am��� and b � �b�b� � � � bm��bm��� are elements of F�m �

then a � b � c � �c�c� � � � cm��cm���� where ci � �ai � bi� mod �� That is� �eld addition is

performed bitwise�

� Squaring� Let a � �a�a� � � �am��am��� � F�m � Since squaring is a linear operation in F�m �

a� �

�
m��X
i��

ai�
�i

��

�
m��X
i��

ai�
�i�� �

m��X
i��

ai���
�i � �am��a�a� � � � am����

with indices reduced modulo m� Hence squaring a �eld element can be accomplished by a

simple rotation of the vector representation�

� Multiplication� Let p � Tm � � and let u � Fp be an element of order T � De�ne the
sequence F ���� F ���� � � � � F �p� �� by

F ��iuj mod p� � i for � � i � m� �� � � j � T � ��

If a � �a�a� � � � am��am��� and b � �b�b� � � � bm��bm��� are elements of F�m � then a � b � c �

�c�c� � � � cm��cm���� where

cl �

���
��
Pp��

k�� aF �k��lbF �p�k�l if T is even�Pm��
k���akl��bm��kl�� � am��kl��bkl���

�
Pp��

k�� aF �k��lbF �p�k�l if T is odd�

for each l� � � l � m� �� where indices are reduced modulo m�
� Inversion� If a is a non�zero element in F�m � the inverse of a in F�m � denoted a

��� is the

unique element c � F�m for which a � c � ��

Example � �A Gaussian normal basis representation of the �nite �eld F��� For the type T � �

GNB for F�� � let u � � � F�� be an element of order �� The sequence of F �i��s is�
F ��� � � F ��� � � F ��� � � F �� � � F ��� � � F �
� � �

F ��� � � F �	� � � F ��� � � F ���� � � F ���� � � F ���� � ��
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The formulas for the product terms cl are�

c� � a��b� � b� � b�� � a��b� � b�� � a��b� � b�� � a��b� � b��

c� � a��b� � b� � b�� � a��b� � b�� � a��b� � b�� � a��b� � b��

c� � a��b� � b� � b�� � a��b� � b�� � a��b� � b�� � a��b� � b��

c� � a��b� � b� � b�� � a��b� � b�� � a��b� � b�� � a��b� � b���

For example� if a � ������ and b � ������� then c � a � b � �������

Selecting a Gaussian Normal Basis� ANSI X��
� speci�es the following rules for selecting a

GNB for representing the elements of F�m �when m is not divisible by 	��

�� If there exists a type � GNB of F�m � then this basis must be used�

�� If there does not exist a type � GNB of F�m � but there does exist a type � GNB� then the

type � GNB must be used�

�� If neither a type � nor a type � GNB of F�m exists� then the GNB of smallest type must be

used�

The selection of type � GNBs over type � GNBs was somewhat arbitrary � both types of GNBs

admit e�cient implementation of �eld arithmetic� This is not a practical concern since �nite �elds

which have both type � and type � GNBs are relatively scarce � the only such �elds F�m with m

between �
� and 
�� are F���� and F���� � Neither of these two �elds are among those recommended

by NIST �see x������

� Elliptic Curves Over Finite Fields

We give a quick introduction to the theory of elliptic curves� Chapter 
 of Koblitz�s book ���

provides an introduction to elliptic curves and elliptic curve systems� For a more detailed account�

consult Menezes� book ����

��� Elliptic Curves Over Fp

Let p � � be an odd prime� An elliptic curve E over Fp is de�ned by an equation of the form

y� � x� � ax� b� ���

where a� b � Fp� and a� � ��b� �� � �mod p�� The set E�Fp� consists of all points �x� y�� x � Fp�
y � Fp� which satisfy the de�ning equation ���� together with a special point O called the point at
in�nity�

Example � �elliptic curve over F��� Let p � �� and consider the elliptic curve E � y� � x��x�

de�ned over F��� �In the notation of equation ���� we have a � � and b � �� Note that a����b� �

��� � �
 � �� �mod ���� so E is indeed an elliptic curve� The points in E�F��� are O and the
following�
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��� �� ��� ��� ��� ��� ��� ��� �� �� �� �
� ��� �� ��� ��� �	� 	� �	� ���

��� ��� ��� ��� ���� �� ���� �	� ���� �� ���� �� ���� ��� ���� ��� ��� �� ��� �	�

���� 
� ���� ��� ���� �� ���� �� ��	� �� ��	� �� ���� �� ���� ����

Addition Formula� There is a rule� called the chord�and�tangent rule� for adding two points on

an elliptic curve E�Fp� to give a third elliptic curve point� Together with this addition operation�

the set of points E�Fp� forms a group with O serving as its identity� It is this group that is used
in the construction of elliptic curve cryptosystems�

The addition rule is best explained geometrically� Let P � �x�� y�� and Q � �x�� y�� be two

distinct points on an elliptic curve E� Then the sum of P and Q� denoted R � �x�� y��� is de�ned

as follows� First draw the line through P and Q� this line intersects the elliptic curve in a third

point� Then R is the re�ection of this point in the x�axis� This is depicted in Figure �� The elliptic

curve in the �gure consists of two parts� the ellipse�like �gure and the in�nite curve�

R  �x�� y��

x

y

P  �x�� y��

Q  �x�� y��

Figure �� Geometric description of the addition of two distinct elliptic curve points� P �Q 	 R�

If P � �x�� y��� then the double of P � denoted R � �x�� y��� is de�ned as follows� First draw

the tangent line to the elliptic curve at P � This line intersects the elliptic curve in a second point�

Then R is the re�ection of this point in the x�axis� This is depicted in Figure ��

The following algebraic formulae for the sum of two points and the double of a point can now

be derived from the geometric description�

�� P � O � O � P � P for all P � E�Fp��

�� If P � �x� y� � E�Fp�� then �x� y� � �x��y� � O� �The point �x��y� is denoted by �P � and
is called the negative of P � observe that �P is indeed a point on the curve��

�� �Point addition� Let P � �x�� y�� � E�Fp� and Q � �x�� y�� � E�Fp�� where P �� �Q� Then
P � Q � �x�� y��� where

x� �

�
y� � y�
x� � x�

	�

� x� � x�
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x

y

R  �x�� y��

P  �x�� y��

Figure �� Geometric description of the doubling of an elliptic curve point� P � P 	 R�

and

y� �

�
y� � y�
x� � x�

	
�x� � x��� y��

� �Point doubling� Let P � �x�� y�� � E�Fp�� where P �� �P � Then �P � �x�� y��� where

x� �

�
�x�� � a

�y�

	�

� �x�

and

y� �

�
�x�� � a

�y�

	
�x� � x��� y��

Observe that the addition of two elliptic curve points in E�Fp� requires a few arithmetic oper�

ations �addition� subtraction� multiplication� and inversion� in the underlying �eld Fp�

Example � �elliptic curve addition� Consider the elliptic curve de�ned in Example �

�� Let P � �� �� and Q � ���� ���� Then P �Q � �x�� y�� is computed as follows�

x� �

�
��� �
��� 

	�

� � �� � �� � � �� � �	 � �� �mod ����

and

y� � ��� ���� � � �� � 
 �mod ����

Hence P � Q � ���� 
��
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�� Let P � �� ��� Then �P � P � P � �x�� y�� is computed as follows�

x� �

�
���� � �

�

	�

� 	 � ��� � 	 � ��� � �� �mod ����

and

y� � ���� ���� � � ��� � �	 �mod ����

Hence �P � ���� �	��

��� Elliptic Curves Over F�m

An elliptic curve E over F�m is de�ned by an equation of the form

y� � xy � x� � ax� � b� ��

where a� b � F�m � and b �� �� The set E�F�m� consists of all points �x� y�� x � F�m � y � F�m � which
satisfy the de�ning equation ��� together with a special point O called the point at in�nity�

Example � �elliptic curve over F��� Consider F�� as represented by the irreducible trinomial

f�x� � x��x�� �see Example � of Section ��� Consider the elliptic curve E � y��xy � x����x���

over F�� � �In the notation of equation ��� we have a � �� and b � ��� Note that b �� �� so E is
indeed an elliptic curve� The points in E�F��� are O and the following�

��� �� ��� ��� ��� ���� ���� �
� ���� ���� ���� ��� ���� ���� ���� �
�

���� ���� ���� ���� ���� ���� ����� �� ����� �
� ����� �� ����� �����

Addition Formula� As with elliptic curves over Fp� there is a chord�and�tangent rule for adding

points on an elliptic curve E�F�m� to give a third elliptic curve point� Together with this addition

operation� the set of points E�F�m� forms a group with O serving as its identity�
The algebraic formula for the sum of two points and the double of a point are the following�

�� P � O � O � P � P for all P � E�F�m��

�� If P � �x� y� � E�F�m�� then �x� y�� �x� x� y� � O� �The point �x� x� y� is denoted by �P �
and is called the negative of P � observe that �P is indeed a point on the curve��

�� �Point addition� Let P � �x�� y�� � E�F�m� and Q � �x�� y�� � E�F�m�� where P �� �Q�
Then P �Q � �x�� y��� where

x� �

�
y� � y�
x� � x�

	�

�
y� � y�
x� � x�

� x� � x� � a

and

y� �

�
y� � y�
x� � x�

	
�x� � x�� � x� � y��
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� �Point doubling� Let P � �x�� y�� � E�F�m�� where P �� �P � Then �P � �x�� y��� where

x� � x�� �
b

x��

and

y� � x�� �

�
x� �

y�
x�

	
x� � x��

Example � �elliptic curve addition� Consider the elliptic curve de�ned in Example 
�

�� Let P � ���� �
� and Q � ���� ����� Then P �Q � �x�� y�� is computed as follows�

x� �

�
�
 � ���

�� � ��

	�
�
�
 � ���

�� � ��
� �� � �� � �� �

�
��

��

	�

�
��

��
� �� � �� � �� � �

and

y� �

�
�
 � ���

�� � ��

	
��� � �� � � � �
 �

�
��

��

	
����� � �� � ����

Hence P � Q � ��� �����

�� Let P � ���� �
�� Then �P � P � P � �x�� y�� is computed as follows�

x� � ��
��� �

�

�����
� ��� � �� � ���

and

y� � ��
��� �

�
�� �

�


��

	
��� � ��� � ��� � ��� � ��� � �
�

Hence �P � ����� �
��

��� Basic Facts

Group Order� Let E be an elliptic curve over a �nite �eld Fq� Hasse�s theorem states that the

number of points on an elliptic curve �including the point at in�nity� is �E�Fq� � q � �� t where

jtj � �pq� �E�Fq� is called the order of E and t is called the trace of E� In other words� the order
of an elliptic curve E�Fq� is roughly equal to the size q of the underlying �eld�

Group Structure� E�Fq� is an abelian group of rank � or �� That is� E�Fq� is isomorphic

to Zn� 	 Zn� � where n� divides n�� for unique positive integers n� and n�� Here� Zn denotes

the cyclic group of order n� Moreover� n� divides q � �� If n� � �� then E�Fq� is said to be

cyclic� In this case E�Fq� is isomorphic to Zn� � and there exists a point P � E�Fq� such that

E�Fq� � fkP � � � k � n� � �g� such a point is called a generator of E�Fq��

Example � �cyclic elliptic curve� Consider the elliptic curve E�F��� de�ned in Example � Since

�E�F��� � ��� which is prime� E�F��� is cyclic and any point other than O is a generator of E�F����
For example� P � ��� �� is a generator as the following shows�
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�P � ��� �� �P � ���� ��� �P � ���� �� P � ��� ��� �P � ��� ���


P � ��� ��� �P � ���� 
� 	P � ��� �� �P � �� �� ��P � ���� ��

��P � ���� �� ��P � ���� �� ��P � �	� ��� �P � ��	� �� ��P � ��	� ��

�
P � �	� 	� ��P � ���� �� �	P � ���� �	� ��P � ���� �	� ��P � �� �
�

��P � ��� �	� ��P � ���� ��� ��P � ��� ��� �P � ��� �� ��P � ��� ���

�
P � ���� �� ��P � ���� ��� �	P � ��� ��� ��P � O�

� ECDSA Domain Parameters

The domain parameters for ECDSA consist of a suitably chosen elliptic curve E de�ned over a

�nite �eld Fq of characteristic p� and a base point G � E�Fq�� Domain parameters may either be

shared by a group of entities� or speci�c to a single user�

x��� describes the requirements for what constitutes �suitable� domain parameters� In x���� a
procedure is speci�ed for generating elliptic curves veri�ably at random� x��� outlines a method
for generating domain parameters� while x�� presents a procedure for verifying that a given set of
domain parameters meets all requirements�

��� Domain Parameters

In order to facilitate interoperability� some restrictions are placed on the underlying �eld size q and

the representation used for the elements of Fq� Moreover� to avoid some speci�c known attacks�

restrictions are placed on the elliptic curve and the order of the base point�

Field Requirements� The order of the underlying �nite �eld is either q � p� an odd prime� or

q � �m� a power of �� In the case q � p� the underlying �nite �eld is Fp� the integers modulo p� In

the case q � �m� the underlying �nite �eld is F�m whose elements are represented with respect to

a polynomial or a normal basis as described in x��
Elliptic Curve Requirements� In order to avoid Pollard�s rho ���� and the Pohlig�Hellman ����

attacks on the elliptic curve discrete logarithm problem �see x	���� it is necessary that the number
of Fq�rational points on E be divisible by a su�ciently large prime n� ANSI X��
� mandates that

n � ����� Having �xed an underlying �eld Fq� n should be selected to be as large as possible� i�e��

one should have n � q� so �E�Fq� is almost prime� In the remainder of this paper� we shall assume

that n � ���� and that n � 
p
q� The co�factor is de�ned to be h � �E�Fq��n�

Some further precautions should be exercised when selecting the elliptic curve� To avoid the

reduction algorithms of Menezes� Okamoto and Vanstone ���� and Frey and R�uck ����� the curve

should be non�supersingular �i�e�� p should not divide �q � � � �E�Fq���� More generally� one
should verify that n does not divide qk � � for all � � k � C� where C is large enough so that

it is computationally infeasible to �nd discrete logarithms in FqC �C � �� su�ces in practice �����

Finally� to avoid the attack of Semaev �	��� Smart �	
�� and Satoh and Araki ���� on Fq�anomalous

curves� the curve should not be Fq�anomalous �i�e�� �E�Fq� �� q��

A prudent way to guard against these attacks� and similar attacks against special classes of

curves that may be discovered in the future� is to select the elliptic curve E at random subject to

the condition that �E�Fq� is divisible by a large prime � the probability that a random curve
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succumbs to these special�purpose attacks is negligible� A curve can be selected veri�ably at random

by choosing the coe�cients of the de�ning elliptic curve equation as the outputs of a one�way

function such as SHA�� according to some pre�speci�ed procedure� A procedure for accomplishing

this� similar in spirit to the method given in FIPS �	
 �
�� for selecting DSA primes veri�ably at

random� is described in x����
Summary� To summarize� domain parameters are comprised of�

�� a �eld size q� where either q � p� an odd prime� or q � �m�

�� an indication FR ��eld representation� of the representation used for the elements of Fq�

�� �optional� a bit string seedE of length at least �
� bits� if the elliptic curve was generated in

accordance with the method described in x����
� two �eld elements a and b in Fq which de�ne the equation of the elliptic curve E over Fq �i�e��

y� � x� � ax� b in the case p � �� and y� � xy � x� � ax� � b in the case p � ���

�� two �eld elements xG and yG in Fq which de�ne a �nite point G � �xG� yG� of prime order in

E�Fq��


� the order n of the point G� with n � ���� and n � 
p
q� and

�� the cofactor h � �E�Fq��n�

��� Generating an Elliptic Curve Veri�ably at Random

This subsection describes the method that is used for generating an elliptic curve veri�ably at

random� The de�ning parameters of the elliptic curve are de�ned to be outputs of the one�way

hash function SHA�� �as speci�ed in FIPS �	��� �
���� The input seed to SHA�� then serves as

proof �under the assumption that SHA�� cannot be inverted� that the elliptic curve was indeed

generated at random� This provides some assurance to the user of the elliptic curve that the entity

who generated the elliptic curve did not intentionally construct a �weak� curve which it could

subsequently exploit to recover the user�s private keys� Use of this generation method can also help

mitigate concerns regarding the possible future discovery of new and rare classes of weak elliptic

curves� as such rare curves would essentially never be generated�

����� The Case q � p

The following notation is used� t � dlog� pe� s � b�t � ����
�c and v � t� �
� � s�
Algorithm �� Generating a Random Elliptic Curve Over Fp�

Input� A �eld size p� where p is an odd prime�

Output� A bit string seedE of length at least �
� bits and �eld elements a� b � Fp which de�ne
an elliptic curve E over Fp�

�� Choose an arbitrary bit string seedE of length g 
 �
� bits�
�� Compute H � SHA���seedE�� and let c� denote the bit string of length v bits obtained by

taking the v rightmost bits of H �
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�� Let W� denote the bit string of length v bits obtained by setting the leftmost bit of c� to ��

�This ensures that r � p��

� Let z be the integer whose binary expansion is given by the g�bit string seedE�

�� For i from � to s do�

��� Let si be the g�bit string which is the binary expansion of the integer �z � i� mod �g�

��� Compute Wi � SHA���si��


� Let W be the bit string obtained by the concatenation of W��W�� � � � �Ws as follows� W �

W� kW� k � � � kWs�

�� Let r be the integer whose binary expansion is given by W �

	� If r � � or if r� �� � � �mod p� then go to step ��
�� Choose arbitrary integers a� b � Fp� not both �� such that r � b� � a� mod p� �For example�

one may take a � r and b � r��

��� The elliptic curve chosen over Fp is E � y� � x� � ax � b�

��� Output�seedE� a� b��

Isomorphism Classes of Elliptic Curves Over Fp� Two elliptic curves E� � y
� � x��a�x�b�

and E� � y
� � x��a�x�b� de�ned over Fp are isomorphic over Fp if and only if there exists u � Fp�

u �� �� such that a� � u�a� and b� � u�b�� �Isomorphic elliptic curves are essentially the same� In

particular� if E� is isomorphic to E�� then the groups E��Fp� and E��Fp� are isomorphic as abelian

groups�� Observe that if E� and E� are isomorphic and b� �� � �so b� �� ��� then a�
�

b��
�

a�
�

b��
� The

singular elliptic curves� i�e�� the curves E � y� � x� � ax � b for which a� � ��b� � � �mod p��
are precisely those which either have a � � and b � �� or a�

b�
� ��	

� � If r � Fp� r �� �� r �� ��	
� �

then there are precisely � isomorphism classes of curves E � y� � x�� ax� b with a�

b�
� r �mod p��

Hence� there are essentially only � choices for �a� b� in step � of Algorithm �� The conditions r �� �
and r �� ��	

� imposed in step 	 ensure the exclusion of singular elliptic curves� Finally� we mention

that this method of generating curves will never produce the elliptic curves with a � �� b �� ��
nor the elliptic curves with a �� �� b � �� This is not a concern because such curves constitute
a negligible fraction of all elliptic curves� and therefore are unlikely to ever be generated by any

method which selects an elliptic curve uniformly at random�

The Twist of an Elliptic Curve Over Fp� The non�isomorphic elliptic curves E� � y� �

x� � ax� b and E� � y� � x� � ac�x� � bc�� where c � Fp is a quadratic non�residue modulo p� are
said to be twists of each other� Note that both these curves have the same r value� Their orders

are related by the equation �E��Fp���E��Fp� � �p��� Thus� if one is able to compute �E��Fp��

then one can easily deduce �E��Fp��

Algorithm �� Verifying that an Elliptic Curve was Randomly Generated Over Fp�

Input� A �eld size p �a prime�� a bit string seedE of length g 
 �
� bits� and �eld elements

a� b � Fp which de�ne an elliptic curve E � y� � x� � ax � b over Fp�

Output� Acceptance or rejection that E was randomly generated using Algorithm ��
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�� Compute H � SHA���seedE�� and let c� denote the bit string of length v bits obtained by

taking the v rightmost bits of H �

�� Let W� denote the bit string of length v bits obtained by setting the leftmost bit of c� to ��

�� Let z be the integer whose binary expansion is given by the g�bit string seedE�

� For i from � to s do�

��� Let si be the g�bit string which is the binary expansion of the integer �z � i� mod �g�

��� Compute Wi � SHA���si��

�� Let W be the bit string obtained by the concatenation of W��W�� � � � �Ws as follows� W
� �

W� kW� k � � � kWs�


� Let r� be the integer whose binary expansion is given by W ��

�� If r� � b� � a� �mod p� then accept� otherwise reject�

����� The Case q � �m

The following notation is used� s � b�m� ����
�c and v � m� �
� � s�

Algorithm �� Generating a Random Elliptic Curve Over F�m �

Input� A �eld size q � �m�

Output� A bit string seedE of length at least �
� bits and �eld elements a� b � F�m which de�ne
an elliptic curve E over F�m �

�� Choose an arbitrary bit string seedE of length g 
 �
� bits�
�� Compute H � SHA���seedE�� and let b� denote the bit string of length v bits obtained by

taking the v rightmost bits of H �

�� Let z be the integer whose binary expansion is given by the g�bit string seedE�

� For i from � to s do�

��� Let si be the g�bit string which is the binary expansion of the integer �z � i� mod �g�

��� Compute bi � SHA���si��

�� Let b be the �eld element obtained by the concatenation of b�� b�� � � � � bs as follows� b �

b� k b� k � � � k bs�

� If b � � then go to step ��

�� Let a be an arbitrary element of F�m �

	� The elliptic curve chosen over F�m is E � y� � xy � x� � ax� � b�

�� Output�seedE� a� b��

Isomorphism Classes of Elliptic Curves Over F�m � Two elliptic curves E� � y� � xy �

x� � a�x
� � b� and E� � y� � xy � x� � a�x

� � b� de�ned over F�m are isomorphic over F�m if

and only if b� � b� and Tr�a�� � Tr�a��� where Tr is the trace function Tr � F�m �� F� de�ned
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by Tr��� � � � �� � ��
�

� � � �� ��
m��

� �Isomorphic elliptic curves are essentially the same� In

particular� if E� is isomorphic to E�� then the groups E��F�m� and E��F�m� are isomorphic as

abelian groups�� It follows that a set of representatives of the isomorphism classes of elliptic curves

over F�m is fy�� xy � x�� ax� � b j b � F�m � b �� �� a � f�� �gg� where � � F�m is a �xed element
with Tr��� � � �if m is odd� we can take � � ��� Hence� having selected b� there are essentially

only � choices for a in step � of Algorithm ��

The Twist of an Elliptic Curve Over F�m � The non�isomorphic elliptic curves E� � y
��xy �

x� � a�x
� � b and E� � y

� � xy � x�� a�x
�� b where Tr�a�� �� Tr�a�� are said to be twists of each

other� Their orders are related by the equation �E��F�m� ��E��F�m� � �
m�� �� Thus� if one is

able to compute �E��F�m�� then one can easily deduce �E��F�m�� The order of an elliptic curve

over F�m is always even� Furthermore� �E��F�m� � � �mod � if Tr�a�� � �� and �E��F�m� � �
�mod � if Tr�a�� � ��

Algorithm �� Verifying that an Elliptic Curve was Randomly Generated Over F�m �

Input� A �eld size q � �m� a bit string seedE of length g 
 �
� bits� and �eld elements a� b � F�m
which de�ne an elliptic curve E � y� � xy � x� � ax� � b over F�m �

Output� Acceptance or rejection that E was randomly generated using Algorithm ��

�� Compute H � SHA���seedE�� and let b� denote the bit string of length v bits obtained by

taking the v rightmost bits of H �

�� Let z be the integer whose binary expansion is given by the g�bit string seedE�

�� For i from � to s do�

��� Let si be the g�bit string which is the binary expansion of the integer �z � i� mod �g�

��� Compute bi � SHA���si��

� Let b� be the �eld element obtained by the concatenation of b�� b�� � � � � bs as follows� b� �

b� k b� k � � � k bs�
�� If b � b� then accept� otherwise reject�

��� Domain Parameter Generation

The following is one way to generate cryptographically secure domain parameters�

�� Select coe�cients a and b from Fq veri�ably at random using Algorithm � or Algorithm ��

Let E be the curve y� � x�� ax� b in the case q � p� and y�� xy � x�� ax�� b in the case

q � �m�

�� Compute N � �E�Fq��

�� Verify that N is divisible by a large prime n �n � ���� and n � 
p
q�� If not� then go to

step ��

� Verify that n does not divide qk � � for each k� � � k � ��� If not� then go to step ��
�� Verify that n �� q� If not� then go to step ��
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� Select an arbitrary point G� � E�Fq� and set G � �N�n�G
�� Repeat until G �� O�

Point Counting� In ��	� Schoof �	�� presented a polynomial�time algorithm for computing

�E�Fq�� the number of points on an elliptic curve over Fq in the case when q is odd� the algorithm

was later extended to the case of q � �m by Koblitz ���� Schoof�s algorithm is rather ine�cient in

practice for the values of q of practical interest �i�e� q � ������ In the last few years a lot of work

has been done on improving and re�ning Schoof�s algorithm� for example� see Lercier and Morain

��� and Lercier ���� With these improvements� cryptographically suitable elliptic curves over �elds

whose orders are as large as ���� can be randomly generated in a few hours on a workstation �see

Lercier �	� and Izu et al� ������

The Complex Multiplication �CM� Method� Another method for generating cryptographi�

cally suitable elliptic curves is the CM method� Over Fp the CM method is also called the Atkin�

Morain method ��	�� over F�m it is also called the Lay�Zimmer method �
�� A detailed description

of the CM method can be found in IEEE P��
� �����

Let E be an elliptic curve over Fq of order N � Let Z � q � �q � ��N�� and write Z � DV �

where D is a squarefree integer� Then E is said to have complex multiplication by D� If one knows

D for a given curve� then one can e�ciently compute the order of the curve�

The CM method �rst �nds a D for which there exists an elliptic curve E over Fq with complex

multiplication by D and having nearly prime order N � nh �where n is prime�� and furthermore

where n �� q and n does not divide qk � � for each � � k � ��� It then constructs the coe�cients
of E� The CM method is only e�cient for small D� in which case it is much faster than Schoof�s

algorithm� Thus� a potential drawback of the CM method is that it can only be used to generate

elliptic curves having complex multiplication by small D�

Koblitz Curves� These curves� also known as anomalous binary curves� were �rst proposed for

cryptographic use by Koblitz ���� They are elliptic curves over F�m whose de�ning equations have

coe�cients in F�� Thus� there are � Koblitz curves over F�m � y
� � xy � x� � � and y� � xy �

x� � x� � �� Solinas �		� ���� building on earlier work of Meier and Sta�elbach ����� showed how

one can compute kP very e�ciently for arbitrary k where P is a point on a Koblitz curve� Since

performing such scalar multiplications is the dominant computational step in ECDSA signature

generation and veri�cation �see x��� Koblitz curves are very attractive for use in the ECDSA�

��� Domain Parameter Validation

Domain parameter validation ensures that the domain parameters have the requisite arithmetical

properties� Reasons for performing domain parameter validation in practice include� �i� prevention

of malicious insertion of invalid domain parameters which may enable some attacks� and �ii� detec�

tion of inadvertent coding or transmission errors� Use of an invalid set of domain parameters can

void all expected security properties�

An example of a concrete �albeit far�fetched� attack that can be launched if domain parameter

validation for a signature scheme is not performed was demonstrated by Blake�Wilson and Menezes

����� The attack is on a key agreement protocol which employs the ElGamal signature scheme�
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Methods for Validating Domain Parameters� The assurance that a setD � �q�FR� a� b� G� n�

h� of EC domain parameters is valid can be provided to an entity using one of the followingmethods�

�� A performs explicit domain parameter validation using Algorithm � �shown below��

�� A generates D itself using a trusted system�

�� A receives assurance from a trusted party T �e�g�� a Certi�cation Authority� that T has

performed explicit domain parameter validation of D using Algorithm ��

� A receives assurance from a trusted party T that D was generated using a trusted system�

Algorithm �� Explicit Validation of a Set of EC Domain Parameters�

Input� A set of EC domain parameters D � �q�FR� a� b� G� n� h��

Output� Acceptance or rejection of the validity of D�

�� Verify that q is an odd prime �q � p� or a power of � �q � �m��

�� Verify that FR is a �valid� representation for Fq�

�� Verify that G �� O�
� Verify that a� b� xG and yG are properly represented elements of Fq �i�e�� integers in the

interval ��� p� �� in the case q � p� and bit strings of length m bits in the case q � �m��

�� �Optional� If the elliptic curve was randomly generated in accordance with Algorithm � or

Algorithm � of x���� verify that seedE is a bit string of length at least �
� bits and use
Algorithm � or Algorithm  to verify that a and b were suitably derived from seedE�


� Verify that a and b de�ne an elliptic curve over Fq �i�e�� a
� � ��b� �� � �mod p� if q � p�

b �� � if q � �m��
�� Verify that G lies on the elliptic curve de�ned by a and b �i�e�� y�G � x�G � axG� b in the case

q � p� and y�G � xGyG � x�G � ax�G � b in the case q � �m��

	� Verify that n is prime�

�� Verify that n � ���� and that n � 
p
q�

��� Verify that nG � O�
��� Compute h� � b�pq � ����nc and verify that h � h��

��� Verify that n does not divide qk � � for each k� � � k � ���
��� Verify that n �� q�

�� If any veri�cation fails� then D is invalid � otherwise D is valid�

Verifying the Order of an Elliptic Curve� Recall that by Hasse�s Theorem� �
p
q � ��� �

�E�Fq� � �pq����� Hence n � pq implies that n� does not divide �E�Fq�� and thus E�Fq� has
a unique subgroup of order n� Also� since �

p
q � ��� � �pq � ��� � pq� there is a unique integer

h such that q � �� �pq � nh � q � � � �
p
q� namely h � b�pq � ����nc� Thus steps �� �� and ��

of Algorithm � verify that �E�Fq� is indeed equal to nh�
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As noted in x���� counting the number of points on a randomly generated elliptic curve is a
complicated and cumbersome task� In practice� one may buy software from a vendor to perform the

point counting� We note that since the alleged order of an elliptic curve can be e�ciently veri�ed

with ��� certainty� such software does not have to be trusted�

� ECDSA Key Pairs

An ECDSA key pair is associated with a particular set of EC domain parameters� The public key

is a random multiple of the base point� while the private key is the integer used to generate the

multiple� x
�� summarizes the procedure for key pair generation� x
�� presents a procedure for
verifying that a given public key meets all requirements� x
�� discusses the importance of proving
possession of a private key corresponding to a public key to a Certi�cation Authority �CA� when

the public key is being certi�ed by the CA�

	�� Key Pair Generation

An entity A�s key pair is associated with a particular set of EC domain parametersD � �q�FR� a� b�

G� n� h�� This association can be assured cryptographically �e�g�� with certi�cates� or by context

�e�g�� all entities use the same domain parameters�� The entity A must have the assurance that the

domain parameters are valid �see x��� prior to key generation�

ECDSA Key Pair Generation� Each entity A does the following�

�� Select a random or pseudorandom integer d in the interval ��� n� ���
�� Compute Q � dG�

�� A�s public key is Q� A�s private key is d�

	�� Public Key Validation

Public key validation� as �rst enunciated by Johnson ����� ensures that a public key has the requisite

arithmetical properties� Successful execution of this routine demonstrates that an associated private

key logically exists� although it does not demonstrate that someone actually has computed the

private key nor that the claimed owner actually possesses the private key� Reasons for performing

public key validation in practice include� �i� prevention of malicious insertion of an invalid public

key which may enable some attacks� and �ii� detection of inadvertent coding or transmission errors�

Use of an invalid public key can void all expected security properties�

An example of a concrete attack that can be launched if public key validation is not performed

was demonstrated by Lim and Lee ����� The attack is on a Di�e�Hellman�based key agreement

protocol�

Methods for Validating Public Keys� The assurance that a public key Q is valid can be

provided to an entity A using one of the following methods�

�� A performs explicit public key validation using Algorithm 
 �shown below��

�� A generates Q itself using a trusted system�
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�� A receives assurance from a trusted party T �e�g�� a Certi�cation Authority� that T has

performed explicit public key validation of A using Algorithm 
�

� A receives assurance from a trusted party T that Q was generated using a trusted system�

Algorithm �� Explicit Validation of an ECDSA Public Key�

Input� A public key Q � �xQ� yQ� associated with valid domain parameters �q�FR� a� b� G� n� h��

Output� Acceptance or rejection of the validity of Q�

�� Check that Q �� O�
�� Check that xQ and yQ are properly represented elements of Fq �i�e�� integers in the interval

��� p� �� in the case q � p� and bit strings of length m bits in the case q � �m��

�� Check that Q lies on the elliptic curve de�ned by a and b�

� Check that nQ � O�
�� If any check fails� then Q is invalid � otherwise Q is valid�

	�� Proof of Possession of a Private Key

If an entity C is able to certify A�s public key Q as its own public key� then C can claim that A�s

signed messages originated from C� To avoid this� the CA should require all entities A to prove

possession of the private keys corresponding to its public keys before the CA certi�es the public key

as belonging to A� This proof of possession can be accomplished by a variety of means� for example

by requiring A to sign a message of the CA�s choice� or by using zero�knowledge techniques �see

Chaum� Evertse and van de Graaf ����� Note that proof of possession of a private key provides

di�erent assurances from public key validation� The former demonstrates possession of a private

key even though it may correspond to an invalid public key� while the latter demonstrates validity

of a public key but not ownership of the corresponding private key� Doing both provides a high

level of assurance�

� ECDSA Signature Generation and Veri�cation

This section describes the procedures for generating and verifying signatures using the ECDSA�

ECDSA Signature Generation� To sign a message m� an entity A with domain parameters

D � �q�FR� a� b� G� n� h� and associated key pair �d�Q� does the following�

�� Select a random or pseudorandom integer k� � � k � n� ��
�� Compute kG � �x�� y�� and r � x� mod n� If r � � then go to step ��

�� Compute k�� mod n�

� Compute e � SHA���m��

�� Compute s � k���e� dr� mod n� If s � � then go to step ��


� A�s signature for the message m is �r� s��
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ECDSA Signature Verification� To verify A�s signature �r� s� on m� B obtains an authen�

tic copy of A�s domain parameters D � �q�FR� a� b� G� n� h� and associated public key Q� It is

recommended that B also validates D and Q �see x�� and x
���� B then does the following�
�� Verify that r and s are integers in the interval ��� n� ���
�� Compute e � SHA���m��

�� Compute w � s�� mod n�

� Compute u� � ew mod n and u� � rw mod n�

�� Compute X � u�G � u�Q� If X � O� then reject the signature� Otherwise� compute
v � x� mod n where X � �x�� y���


� Accept the signature if and only if v � r�

Proof that Signature Verification Works� If a signature �r� s� on a message m was indeed

generated by A� then s � k���e� dr� mod n� Rearranging gives

k � s���e� dr� � s��e� s��rd � we� wrd � u� � u�d �mod n��

Thus u�G� u�Q � �u� � u�d�G � kG� and so v � r as required�

Conversion Between Data Types� ANSI X��
� speci�es a method for converting �eld elements

to integers� This is used to convert the �eld element x� to an integer in step � of signature generation

and step � of signature veri�cation prior to computing x� mod n� ANSI X��
� also speci�es a

method for converting bit strings to integers� This is used to convert the output e of SHA�� to an

integer prior to its use in the modular computation in step � of signature generation and step  of

signature veri�cation�

Public	Key Certificates� Before verifying A�s signature on a message� B needs to obtain an

authentic copy of A�s domain parameters D and associated public key Q� ANSI X��
� does not

specify a mechanism for achieving this� In practice� authentic public keys are most commonly

distributed via certi�cates� A�s public�key certi�cate should include a string of information that

uniquely identi�es A �such as A�s name and address�� her domain parameters D �if these are not

already known from context�� her public key Q� and a certifying authority�s �CA�s� signature over

this information� B can then use his authentic copy of the CA�s public key to verify A�s certi�cate�

thereby obtaining an authentic copy of A�s static public key�

Rationale for Checks on r and s in Signature Verification� Step � of signature veri��

cation checks that r and s are integers in the interval ��� n� ��� These checks can be performed
very e�ciently� and are prudent measures in light of known attacks on related ElGamal signature

schemes which do not perform these checks �for example of such attacks� see Bleichenbacher ������

The following is a plausible attack on ECDSA if the check r �� � �and� more generally� r �� �

�mod n�� is not performed� Suppose that A is using the elliptic curve y� � x� � ax � b over Fp�

where b is a quadratic residue modulo p� and suppose that A uses a base point G � ���
p
b� of

prime order n� �It is plausible that all entities may select a base point with � x�coordinate in order
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to minimize the size of domain parameters�� An adversary can now forge A�s signature on any

message m of its choice by computing e � SHA���m�� It can easily be checked that �r � �� s � e�

is a valid signature for m�

Comparing DSA and ECDSA� Conceptually� the ECDSA is simply obtained from the DSA by

replacing the subgroup of order q of Z�p generated by g with the subgroup of points on an elliptic

curve that are generated by G� The only signi�cant di�erence between ECDSA and DSA is in the

generation of r� The DSA does this by taking the random element X � gk mod p and reducing

it modulo q� thus obtaining an integer in the interval ��� q � ��� The ECDSA generates r in the
interval ��� n� �� by taking the x�coordinate of the random point kG and reducing it modulo n�

� Security Considerations

The security objective of ECDSA is to be existentially unforgeable against a chosen�message attack�

The goal of an adversary who launches such an attack against a legitimate entity A is to obtain

a valid signature on a single message m� after having obtained A�s signature on a collection of

messages �not including m� of the adversary�s choice�

ECDSA has not been proven to be existentially unforgeable against chosen�message attack�

However� slight variants of DSA �and hence also slight variants of ECDSA� have been proven

secure by Pointcheval and Stern ���� under the assumptions that the discrete logarithm problem is

hard and that the hash function employed is a random function�

The possible attacks on ECDSA can be classi�ed as follows�

�� Attacks on the elliptic curve discrete logarithm problem�

�� Attacks on the hash function employed�

�� Other attacks�

This section summarizes the current knowledge of these attacks and how they can be avoided in

practice�


�� The Elliptic Curve Discrete Logarithm Problem

One way in which an adversary can succeed is to compute A�s private key d from A�s domain pa�

rameters �q�FR� a� b� G� n� h� and public key Q� The adversary can subsequently forge A�s signature

on any message of its choice�

Problem Definition� The elliptic curve discrete logarithm problem �ECDLP� is the following�

given an elliptic curve E de�ned over a �nite �eld Fq� a point P � E�Fq� of order n� and a point

Q � lP where � � l � n � �� determine l�

����� Known Attacks

This subsection overviews the algorithms known for solving the ECDLP and discusses how they

can be avoided in practice�
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�� Naive Exhaustive Search� In this method� one simply computes successive multiples of

P � P � �P � �P � P� � � � until Q is obtained� This method can take up to n steps in the worst

case�

�� Pohlig	Hellman Algorithm� This algorithm� due to Pohlig and Hellman ����� exploits the

factorization of n� the order of the point P � The algorithm reduces the problem of recovering

l to the problem of recovering l modulo each of the prime factors of n� the desired number l

can then be recovered by using the Chinese Remainder Theorem�

The implications of this algorithm are the following� To construct the most di�cult instance

of the ECDLP� one must select an elliptic curve whose order is divisible by a large prime n�

Preferably� this order should be a prime or almost a prime �i�e� a large prime n times a small

integer h�� For the remainder of this section� we shall assume that the order n of P is prime�

�� Baby	Step Giant	Step Algorithm� This algorithm is a time�memory trade�o� of the

method of exhaustive search� It requires storage for about
p
n points� and its running time

is roughly
p
n steps in the worst case�

� Pollard
s Rho Algorithm� This algorithm� due to Pollard ����� is a randomized version of

the baby�step giant�step algorithm� It has roughly the same expected running time �
p
�n��

steps� as the baby�step giant�step algorithm� but is superior in that it requires a negligible

amount of storage�

Gallant� Lambert and Vanstone ����� and Wiener and Zuccherato ���� showed how Pollard�s

rho algorithm can be sped up by a factor of
p
�� Thus the expected running time of Pollard�s

rho method with this speedup is �
p
�n��� steps�

�� Parallelized Pollard
s Rho Algorithm� Van Oorschot and Wiener ���� showed how

Pollard�s rho algorithm can be parallelized so that when the algorithm is run in parallel on

r processors� the expected running time of the algorithm is roughly �
p
�n����r� steps� That

is� using r processors results in an r�fold speed�up�


� Pollard
s lambda method� This is another randomized algorithm due to Pollard �����

Like Pollard�s rho method� the lambda method can also be parallelized with a linear speedup�

The parallelized lambda�method is slightly slower than the parallelized rho�method ����� The

lambda�method is� however� faster in situations when the logarithm being sought is known

to lie in a subinterval ��� b� of ��� n� ��� where b � ����n �����
�� Multiple Logarithms� R� Silverman and Stapleton �	�� observed that if a single instance

of the ECDLP �for a given elliptic curve E and base point P � is solved using �parallelized�

Pollard�s rho method� then the work done in solving this instance can be used to speed up

the solution of other instances of the ECDLP �for the same curve E and base point P �� More

precisely� if the �rst instance takes expected time t� then the second instance takes expected

time �
p
�� ��t � ���t� Having solved these two instances� the third instance takes expected

time �
p
� � p

�� � ����t� Having solved these three instances� the fourth instance takes

expected time �
p
� p

�� � ����t� And so on� Thus subsequent instances of the ECDLP for
a particular elliptic curve become progressively easier� Another way of looking at this is that
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solving k instances of the ECDLP �for the same curve E and base point P � takes only
p
k as

much work as it does to solve one instance of the ECDLP� This analysis does not take into

account storage requirements�

Concerns that successive logarithms become easier can be addressed by ensuring that the

elliptic parameters are chosen so that the �rst instance is infeasible to solve�

	� Supersingular Elliptic Curves� Menezes� Okamoto and Vanstone ���� �� and Frey and

R�uck ���� showed how� under mild assumptions� the ECDLP in an elliptic curve E de�ned

over a �nite �eld Fq can be reduced to the ordinary DLP in the multiplicative group of

some extension �eld Fqk for some k 
 �� where the number �eld sieve algorithm applies� The
reduction algorithm is only practical if k is small � this is not the case for most elliptic curves�

as shown by Balasubramanian and Koblitz �
�� To ensure that the reduction algorithm does

not apply to a particular curve� one only needs to check that n� the order of the point P � does

not divide qk � � for all small k for which the DLP in Fqk is tractable � in practice� when

n � ���� then � � k � �� su�ces ����
An elliptic curve E over Fq is said to be supersingular if the trace t of E is divisible by the

characteristic p of Fq� For this very special class of elliptic curves� it is known that k � 
� It
follows that the reduction algorithm yields a subexponential�time algorithm for the ECDLP

in supersingular curves� For this reason� supersingular curves are explicitly excluded from

use in the ECDSA by the above divisibility check�

More generally� the divisibility check rules out all elliptic curves for which the ECDLP can be

e�ciently reduced to the DLP in some small extension of Fq� These include the supersingular

elliptic curves and elliptic curves of trace � �elliptic curves E over Fq for which �E�Fq� � q����
�� Prime	Field Anomalous Curves� An elliptic curve E over Fp is said to be prime��eld�

anomalous if �E�Fp� � p� Semaev �	��� Smart �	
�� and Satoh and Araki ���� showed how

to e�ciently solve the ECDLP for these curves� The attack does not extend to any other

classes of elliptic curves� Consequently� by verifying that the number of points on an elliptic

curve is not equal to the cardinality of the underlying �eld� one can easily ensure that the

Semaev�Smart�Satoh�Araki attack does not apply�

��� Curves Defined Over a Small Field� Suppose that E is an elliptic curve de�ned over

the �nite �eld F�e � Gallant� Lambert and Vanstone ����� and Wiener and Zuccherato ����

showed how Pollard�s rho algorithm for computing elliptic curve logarithms in E�F�ed� can be

further sped up by a factor of
p
d� thus the expected running time of Pollard�s rho method

for these curves is �
p
�n�d��� steps� For example� if E is a Koblitz curve �see x����� then

Pollard�s rho algorithm for computing elliptic curve logarithms in E�F�m� can be sped up by

a factor of
p
m� This speedup should be considered when doing a security analysis of elliptic

curves whose coe�cients lie in a small sub�eld�

��� Curves Defined Over F�m� m Composite� Galbraith and Smart ����� expanding on

earlier work of Frey ����� discuss how the Weil descent might be used to solve the ECDLP

for elliptic curves de�ned over F�m where m is composite �such �elds are sometimes called

composite �elds�� More recently� Gaudry� Hess and Smart ��� re�ned these ideas to provide
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strong evidence that when m has a small divisor l� e�g� l � � the ECDLP for elliptic curves

de�ned over F�m can be solved faster than with Pollard�s rho algorithm� In light of these

results� it seems prudent to not use elliptic curves over composite �elds�

It should be noted that some ECC standards� including the draft ANSI X��
� ��� explicitly

exclude the use of elliptic curves over composite �elds� The ANSI X�F� committee also agreed

in January ���� to exclude the use of such curves in a forthcoming revision of ANSI X��
��

��� Non	Applicability of Index	Calculus Methods� Whether or not there exists a general

subexponential�time algorithm for the ECDLP is an important unsettled question� and one of

great relevance to the security of ECDSA� It is extremely unlikely that anyone will ever be able

to prove that no subexponential�time algorithm exists for the ECDLP� However� much work

has been done on the DLP over the past � years� and more speci�cally on the ECDLP over

the past �
 years� and no subexponential�time algorithm has been discovered for the ECDLP�

Miller ���� and J� Silverman and Suzuki �	� have given convincing arguments for why the

most natural way in which the index�calculus algorithms can be applied to the ECDLP is

most likely to fail�

��� Xedni	Calculus Attacks� A very interesting line of attack on the ECDLP� called the

xedni�calculus attack was recently proposed by J� Silverman �	��� One intriguing aspect of

the xedni�calculus is that it can be adapted to solve both the ordinary discrete logarithm

and the integer factorization problems� However� it was subsequently shown by a team of

researchers including J� Silverman �see Jacobson et al� ��
�� that the attack is virtually certain

to fail in practice�

�� Hyperelliptic Curves� Hyperelliptic curves are a family of algebraic curves of arbitrary

genus that includes elliptic curves� Hence� an elliptic curve can be viewed as a hyperelliptic

curve of genus �� Adleman� DeMarrais and Huang ��� �see also Stein� M�uller and Thiel �����

presented a subexponential�time algorithm for the discrete logarithm problem in the jacobian

of a large genus hyperelliptic curve over a �nite �eld� However� in the case of elliptic curves�

the algorithm is worse than naive exhaustive search�

��� Equivalence to Other Discrete Logarithm Problems� Stein ���� and Zuccherato

���� showed that the discrete logarithm problem in real quadratic congruence function �elds

of genus � is equivalent to the ECDLP� Since no subexponential�time algorithm is known for

the former problem� this may provide further evidence for the hardness of the ECDLP�

����� Experimental Results

The best general�purpose algorithm known for the ECDLP is the parallelized version of Pollard�s

rho algorithm which has an expected running time of �
p
�n����r� steps� where n is the �prime�

order of the base point P � and r is the number of processors utilized�

Certicom
s ECC Challenge� Certicom initiated an ECC challenge ���� in November ���� in

order to encourage and stimulate research on the ECDLP� Their challenges consist of instances of

the ECDLP on a selection of elliptic curves� The challenge curves are divided into three categories
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listed below� In the following� ECCp�k denotes a random curve over a �eld Fp� ECC��k denotes a

random curve over a �eld F�m � and ECC�K�k denotes a Koblitz curve �see x���� over F�m � k is the
bitlength of n� In all cases� the bitsize of the order of the underlying �nite �eld is equal or slightly

greater than k �so curves have either prime order or almost prime order��

�� Randomly generated curves over Fp� where p is prime� ECCp���� ECCp�	�� ECCp���� ECCp�

���� ECCp����� ECCp��
�� ECCp����� ECCp����� and ECCp�����

�� Randomly generated curves over F�m � where m is prime� ECC����� ECC��	�� ECC�����

ECC������ ECC������ ECC���
�� ECC������ ECC����	� and ECC������

�� Koblitz curves over F�m � where m is prime� ECC�K���� ECC����	� ECC������ ECC���
��

ECC����	� and ECC����	�

Results of the Challenge� Escott et al� ���� report on their ���	 implementation of the

parallelized Pollard�s rho algorithm which incorporates some improvements of Teske ����� The

hardest instance of the ECDLP they solved was the Certicom ECCp��� challenge� For this task

they utilized over ���� machines from at least �
 countries� and found the answer in �� days� The

total number of steps executed was about � 	 ���� elliptic curve additions which is close to the
expected time ��

p
�n��� � ���	 ����� where n � ��	�� Escott et al� ���� conclude that the running

time of Pollard�s rho algorithm in practice �ts well with the theoretical predictions� They estimate

that the ECCp���� challenge could be solved by a network of ������ PentiumPro ���MHz machines

in about � months�

����� Hardware Attacks

Van Oorschot and Wiener ���� examined the feasibility of implementing parallelized Pollard�s rho

algorithm using special�purpose hardware� They estimated that if n � ���� � ����� then a machine
with r � ���� ��� processors could be built for about US !�� million that could compute a single

elliptic curve discrete logarithm in about �� days� Since ANSI X��
� mandates that the parameter

n should satisfy n � ����� such hardware attacks appear to be infeasible with today�s technology�


�� Attacks on the Hash Function

Definition� A �cryptographic� hash function H is a function that maps bit strings of arbitrary

lengths to bit strings of a �xed length t such that�

�� H can be computed e�ciently�

�� �preimage resistance� For essentially all y � f�� �gt it is computationally infeasible to �nd a
bit string x such that H�x� � y� and

�� �collision resistance� It is computationally infeasible to �nd distinct bit strings x� and x�
such that H�x�� � H�x���

SHA	� Security Requirements� The following explains how attacks on ECDSA can be suc�

cessfully launched if SHA�� is not preimage resistant or not collision resistant�
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�� If SHA�� is not preimage resistant� then an adversary E may be able to forge A�s signatures

as follows� E selects an arbitrary integer l� and computes r as the x�coordinate of Q � lG

reduced modulo n� E sets s � r and computes e � rl mod n� If E can �nd a message m such

that e � SHA���m�� then �r� s� is a valid signature for m�

�� If SHA�� is not collision resistant� then an entity A may be able to repudiate signatures as

follows� A �rst generate two messages m and m� such that SHA���m� � SHA���m��� such a

pair of messages is called a collision for SHA��� She then signs m� and later claims to have

signed m� �note that every signature for m is also a signature for m���

Ideal Security� A t�bit hash function is said to be have ideal security ��
� if both� �i� given

a hash output� producing a preimage requires approximately �t operations� and �ii� producing a

collision requires approximately �t�� operations� SHA�� is a �
��bit hash function and is believed

to have ideal security� The fastest method known for attacking ECDSA by exploiting properties of

SHA�� is to �nd collisions for SHA��� Since this is believed to take �
� steps� attacking ECDSA in

this way is computationally infeasible� Note� however� that this attack imposes an upper bound of

�
� on the security level of ECDSA� regardless of the size of the primary security parameter n� Of

course� this is also the case with all present signature schemes with appendix since the only hash

functions that are widely accepted as being both secure and practical are SHA�� and RIPEMD��
�

�see Dobbertin� Bosselaers and Preneel ������ both of which are �
��bit hash functions�

Variable Output Length Hash Functions� It is envisioned that SHA�� will eventually be

replaced by a family of hash functions Hl� where Hl is an l�bit hash function having ideal security�

If one uses ECDSA with parameter n� then one would use Hl� where l � blog� nc� as the hash
function� In this case� attacking ECDSA by solving the ECDLP and attacking ECDSA by �nding

collisions for Hl� both take approximately the same amount of time�


�� Other Attacks

Security Requirements for Per	Message Secrets� The per�message secrets k in ECDSA

signature generation have the same security requirements as the private key d� This is because if

an adversary E learns a single per�message secret k which was used by A to generate a signature

�r� s� on some message m� then E can recover A�s private key since d � r���ks � e� mod n where

e � SHA���m� �see step � of ECDSA signature generation�� Hence per�message secrets must be

securely generated� securely stored� and securely destroyed after they have been used�

Repeated Use of Per	Message Secrets� The per�message secrets k used to sign two or more

messages should be generated independently of each other� In particular� a di�erent per�message

secret k should be generated for each di�erent message signed� otherwise� the private key d can

be recovered� Note that if a secure random or pseudorandom number generator is used� then the

chance of generating a repeated k value is negligible� To see how private keys can be recovered if

per�message secrets are repeated� suppose that the same per�message secret k was used to generate

ECDSA signatures �r� s�� and �r� s�� on two di�erent messagesm� and m�� Then s� � k���e��dr�
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�mod n� and s� � k���e� � dr� �mod n�� where e� � SHA���m�� and e� � SHA���m��� Then

ks� � e��dr �mod n� and ks� � e��dr �mod n�� Subtraction gives k�s��s�� � e��e� �mod n��
If s� �� s� �mod n�� which occurs with overwhelming probability� then k � �s� � s��

���e� � e��

�mod n�� Thus� an adversary can determine k� and then use this to recover d�

Vaudenay
s Attacks� Vaudenay ���� demonstrated a theoretical weakness in DSA based on his

insight that the actual hash function used in the DSA is SHA�� modulo q� not just SHA��� where

q is a �
��bit prime� �Since SHA�� is a �
��bit hash function� some of its outputs� when converted

to integers� are larger than q� Hence� in general� SHA���m� �� �SHA���m� mod q��� This weakness
allows the selective forgery of one message if the adversary can select the domain parameters� This

weakness is not present in ECDSA because of the requirement that n �the analogous quantity to q

in the DSA� be greater than �����

Duplicate	Signature Key Selection� A signature scheme S is said to have the duplicate�

signature key selection �DSKS� property if given A�s public key PA and given A�s signature sA
on a message M � an adversary E is able to select a valid key pair �PE� SE� for S such that sA is

also E�s signature on M � Note that this de�nition requires that SE is known to E� Blake�Wilson

and Menezes ���� showed how this property can be exploited to attack a key agreement protocol

which employs signatures scheme� They also demonstrated that if entities are permitted to select

their own domain parameters� then ECDSA possesses the DSKS property� To see this� suppose

that A�s domain parameters are DA � �q�FR� a� b� G� n� h�� A�s key pair is �QA� dA�� and �r� s� is

A�s signature on M � The adversary E selects an arbitrary integer c� � � c � n � �� such that
t �� ��s��e � s��rc� mod n� �� �� computes X � s��eG � s��rQ �where e � SHA���M�� and

G � �t�� mod n�X � E then forms DE � �q�FR� a� b� G� n� h� and QE � cG� Then it is easily

veri�ed that DE and QE are valid� and that �r� s� is also E�s signature on M �

If one mandates that the generating point G be selected veri�ably at random during domain

parameter generation �using a method akin to those in x��� for generating elliptic curves veri�ably
at random�� then it appears that ECDSA no longer possesses the DSKS property� It must be

emphasized that possession of the DSKS property does not constitute a weakness of the signature

scheme � the goal of a signature scheme is to be existentially unforgeable against an adaptive

chosen�message attack� Rather� it demonstrates the importance of auditing domain parameter and

public key generation�

Implementation Attacks� ANSI X��
� does not address attacks that could be launched against

implementations of ECDSA such as timing attacks �Kocher ���� di�erential fault analysis �Boneh�

DeMillo and Lipton ������ di�erential power analysis �Kocher� Ja�e and Jun ����� and attacks

which exploit weak random or pseudorandom number generators �Kelsey et al� ������

	 Implementation Considerations

Before implementing ECDSA� several basic choices have to be made including�

�� Type of underlying �nite �eld Fq �Fp or F�m��

�� Field representation �e�g�� polynomial or normal basis for F�m��
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�� Type of elliptic curve E over Fq �e�g�� random curve or Koblitz curve��

� Elliptic curve point representation �e�g�� a�ne or projective coordinates ������

There are many factors that can in�uence the choices made� All of these must be considered

simultaneously in order to arrive at the best solution for a particular application� The factors

include�

� Security considerations�
� Suitability of methods available for optimizing �nite �eld arithmetic �addition� multiplication�
squaring� and inversion��

� Suitability of methods available for optimizing elliptic curve arithmetic �point addition� point
doubling� and scalar multiplication��

� Application platform �software� hardware� or �rmware��
� Constraints of a particular computing environment �e�g�� processor speed� storage� code size�
gate count� power consumption��

� Constraints of a particular communications environment �e�g�� bandwidth� response time��

Selected References to the Literature� The most detailed and comprehensive reference

available on techniques for e�cient �nite �eld and elliptic curve arithmetic is IEEE P��
� ����� See

Gordon ��	� for a detailed survey of various methods for scalar multiplication� For an implemen�

tation report of elliptic curve operations over Fp and F�m � see Schroeppel et al� �	��� De Win et al�

��	�� and Hasegawa� Nakajima and Matsui �����

�
 Interoperability Considerations

The goals of cryptographic standards are twofold�

�� To facilitate the widespread use of cryptographically sound and well�speci�ed techniques�

�� To promote interoperability between di�erent implementations�

Factors Affecting Interoperability� Interoperability is encouraged by completely specifying

the steps of the cryptographic schemes and the formats for shared data such as domain parameters�

keys� and exchanged messages� and by limiting the number of options available to the implemen�

tor� For elliptic curve cryptography and� in particular� the ECDSA� the factors that can impact

interoperability include�

�� The number� and types� of allowable �nite �elds�

�� The number of allowable representations for the elements of an allowable �nite �eld�

�� The number of allowable elliptic curves over an allowable �nite �eld�

� The formats for specifying �eld elements� elliptic curve points� domain parameters� public

keys� and signatures�
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���� ECDSA Standards

Among the standards and draft standards which specify ECDSA� the ones which have been o��

cially approved by their respective accredited organizations are ANSI X��
� ���� FIPS �	
�� �
���

IEEE P��
� ����� and ISO �			�� ����� The salient features of these standards are described �rst�

and then the standards are compared with regards to their compatibility with each other� This is

followed by a brief overview of some other standards that specify or use ECDSA�

Core ECDSA Standards�

�� ANSI X���� This project began in ���� and was adopted as an o�cial ANSI standard in

January ����� The primary objectives of ANSI X��
� were to achieve a high level of security

and interoperability� The underlying �eld is restricted to being a prime �nite �eld Fp or a

binary �nite �eld F�m � The elements of F�m may be represented using a polynomial or a nor�

mal basis over F�� If a polynomial basis is desired� ANSI X��
� mandates that the reduction

polynomial be an irreducible trinomial� provided one exists� and an irreducible pentanomial

otherwise� To facilitate interoperability� a speci�c reduction polynomial is recommended for

each �eld F�m �see x������� If a normal basis is desired� ANSI X��
� mandates that a speci�c
Gaussian normal basis be used �see x������� The primary security requirement imposed on
elliptic curves in ANSI X��
� is that n� the order of the base point G� be greater than �����

Elliptic curves may be either be selected arbitrarily �subject to the security constraints men�

tioned in x���� or veri�ably at random �using the procedure described in x����� ANSI X��
�
de�nes a mandatory octet string representation for elliptic points in either compressed� un�

compressed� or hybrid form� Optional ASN�� �Abstract Syntax Notation One� syntax is

provided for unambiguously describing domain parameters� public keys� and signatures�

�� FIPS ���	�� In May ����� NIST announced plans to revise FIPS �	
 by including RSA and

elliptic curve signature algorithms� In December ���	� FIPS �	
 was revised to include both

the DSA and RSA signature schemes �as speci�ed in ANSI X���� ����� the revised standard

was called FIPS �	
�� �
��� Shortly after that� in June ����� NIST presented a list of ��

elliptic curves that were recommended for U�S� Federal Government use �
��� These curves

are compliant with the ANSI X��
� formats �and therefore also with IEEE P��
� formats�

and are discussed further in x����� In February ����� FIPS �	
�� was revised to include
ECDSA as speci�ed in ANSI X��
� with the choice of elliptic curves restricted to those in

x����� the revised standard is called FIPS �	
���
�� IEEE P����� This project was formally approved as an IEEE standard in February �����

P��
��s scope is very broad and includes public�key cryptographic techniques for encryption�

key agreement� and signatures based on the intractability of integer factorization� discrete

logarithms in �nite �elds� and elliptic curve discrete logarithms� It di�ers fundamentally

from ANSI X��
� and FIPS �	
�� in that it does not mandate minimumsecurity requirements

�e�g�� lower bounds on the order n of the base point G� and has an abundance of options�

Consequently� P��
� should neither be viewed as a security standard nor as an interoperability

standard� but rather as a reference for speci�cations of a variety of techniques from which

applications may select� With regards to the elliptic curve schemes and� in particular� ECDSA�
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the underlying �eld is restricted to being a prime �nite �eld Fp or a binary �nite �eld F�m �

The elements of F�m may be represented with respect to any polynomial or normal basis

over F�� The representation of Fp elements as integers and F�m elements as bit strings are

consistent with ANSI X��
� and FIPS �	
�� conventions�

� ISO�IEC �����	� ����� This standard contains high�level descriptions of some signature

algorithms including ECDSA� whose description is consistent with that of ANSI X��
��

Compatibility� Any ECDSA implementation that is conformant with FIPS �	
�� is also confor�

mant with ANSI X��
�� however the converse is not necessarily true� Furthermore� any ECDSA

implementation that is conformant with ANSI X��
� is also conformant with IEEE P��
�� however

the converse is not necessarily true� Finally� any ECDSA implementation that is conformant with

IEEE P��
� is also conformant with ISO �			��� but the converese is not necessarily true� This

conformance relationship between the four ECDSA standards is depicted in Figure ��

ISO �			��

ANSI X��
�

FIPS �	
��

IEEE P��
�

Figure �� Compatibility of FIPS �	
��� ANSI X��
�� IEEE P��
� and ISO �			�� speci�cations

of ECDSA�

Other ECDSA Standards� ECDSA is being considered for inclusion in numerous core cryptog�

raphy and applications standards� These include�

�� ISO�IEC ����� ����� This draft standard speci�es various cryptographic techniques based

on elliptic curves including signature schemes� public�key encryption schemes� and key estab�

lishment protocols� ISO�IEC ���
 allows any �nite �eld� unlike ANSI X��
�� IEEE P��
��

and FIPS �	
�� where the underlying �eld is required to be either a prime �eld or a binary

�eld� It is expected that the ECDSA description will be consistent with that of ANSI X��
��

�� IETF PKIX �Internet Engineering Task Force Public Key Infrastructure X�����Based�� An

internet draft ��� pro�les the format of ECDSA domain parameters and public keys for use

in X���� certi�cates� The formats are consistent with those present in ANSI X��
��
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�� IETF TLS �Internet Engineering Task Force Transport Layer Security�� This is the IETF�s

adoption of SSL �Secure Sockets Layer� which provides con�dentiality� integrity� and authen�

tication for network connections� ANSI X��
� ECDSA is being considered for inclusion as

one of the signature algorithms �����

� WAP WTLS ���� �Wireless Application Protocol Wireless Transport Layer Security�� Pro�

vides transport layer security for an architecture that enables secure web browsing for mobile

devices such as cellular phones� personal device assistants� and pagers� ANSI X��
� ECDSA

is used for authentication�

���� NIST Recommended Curves

This subsection presents the �� elliptic curves that were recommended �but not mandated� by

NIST in June ���� for U�S� Federal Government use �
��� These curves are also recommended in

the FIPS �	
�� standard�

Recommended Finite Fields� There are �� recommended �nite �elds�

�� The prime �elds Fp for p � �
���� ���� �� p � ����� ������ p � ����� ����� ����� ���� ��

p � ��
� � ���
 � ��� � ��� � �� and p � ���� � ��
�� The binary �elds F���� � F���� � F���� � F���	 � and F�
�� �

The factors which in�uenced the choices of �elds were�

�i� The �elds were selected so that the bitlengths of their orders are twice the key lengths of

common symmetric�key block ciphers � this is because exhaustive key search of a k�bit

block cipher is expected to take roughly the same time as the solution of an instance of the

elliptic curve discrete logarithm problem using Pollard�s rho algorithm for an appropriately�

selected elliptic curve over a �nite �eld whose order has bitlength �k� The correspondence

between symmetric cipher key lengths and �eld sizes is given in Table ��

Symmetric cipher Example Bitlength of p Dimension m of

key length algorithm in prime �eld Fp binary �eld F�m

	� SKIPJACK �
�� ��� �
�

��� Triple�DES �� ���

��	 AES Small �

� ��
 �	�

��� AES Medium �

� �	 ��

��
 AES Large �

� ��� ���

Table �� Recommended �eld sizes for U�S� Federal Government use�

�ii� For prime �elds Fp� the prime moduli p are of a special type �called generalized Mersenne

numbers� for which modular multiplication can be carried out more e�ciently than in general�

see �
�� and �	���
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�iii� For binary �elds F�m � m was chosen so that there exists a Koblitz curve of almost prime order

over F�m � Since �E�F�l� divides �E�F�m� whenever l divides m� this requirement imposes

the condition that m be prime�

Recommended Elliptic Curves� There are three types of elliptic curves�

�� Random elliptic curves over Fp�

�� Koblitz elliptic curves over F�m �

�� Random elliptic curves over F�m �

The parameters of these curves are presented in x������� x������ and x������� In these subsections�
parameters are either given in decimal form or in hexadecimal form preceded by "�x�� For the

binary �elds� the additive and multiplicative identities are simply denoted by � and �� A method

for converting between polynomial and normal basis representations for F�m is given in x������

������ Random Elliptic Curves Over Fp

The following parameters are given for each elliptic curve�
p The order of the prime �eld Fp�

seedE The seed used to randomly generate the coe�cients of the elliptic curve using Algo�

rithm � of x������
r The output of SHA�� in Algorithm ��

a� b The coe�cients of the elliptic curve y� � x� � ax � b satisfying rb� � a� mod p� The

selection a � �� was made for reasons of e�ciency� see IEEE P��
� �����
xG� yG The x and y coordinates of the base point G�

n The �prime� order of G�

h The co�factor�

Curve P���� �p � ����� ��� � ��
p ���������	�
��
����
�	�
��������������
���
���������������

seedE �x ���	ae�f c
���f�� ed	��	�
 d�
���ea e�����d	

r �x ����d�bb bfcb�	�
 	��dcd	f b��
b�ef 	f�d�fe� c��	de�	

a �

b �x �����	�� e	�c
�e� �fa�e�ab �������� feb
deec c���b�b�

xG �x �

da
�e b�����f� �cbf��eb ��a�

�� f�ff�afd 
�ff����

yG �x �����b�	 ffc
da�
 ������ed �b��cdd	 ��f���a� �e���
��

n ���������	�
��
����
�	�
��������	��������������
�
���
��
�

h �
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Curve P��� �p � ����� ��� � ��
p ���	��������	������������	�
����������		������������
���	�������


�

seedE �x bd������ ��d	c�fc dc�	b	�f a�b�ab
f �a��
bc	

r �x 	b�	�c�e ��dd�
f� ����ee�f �c�a�d�� f�d����� �	��d��� ��
���fb

a �

b �x b��	�a
	 �c��b�ab f	����	� 	���b�b� d�bfd
ba ���b���� ��		ffb�

xG �x b��e�cbd �bb�bf�f ������b� �a��c�d� 	�c����� ����
�d� ��	c�d��

yG �x bd����

 b	f���fb �c��dfe� cd���	a� 	a������ ��d	
��� 
	���e��

n ���	��������	������������	�
������	����	�
���������������
������
���

h �

Curve P���
 �p � ����� ���� � ���� � ��� � ��
p ��	����
�����	���
���������������	��	���
������	��������		�������

�����
	

��	�

seedE �x c��d���
 
�e����� �a���
e� ���d��b� 
��f�e��

r �x �efba��� ��
	be�� ��cb�		c �	d�f�e� ce
d
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a �
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 aa�a��e� b�ebbd		 ���

�bc �	�d��b� cc	�b�f� �bce�c�e ��d����b
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�
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yG �x �fe���e� fe�a�f�b 
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 ��bf	�f	

n ��	����
�����	���
���������������	��	������		�����	����������	������
	����

����

h �

Curve P��	 �p � ��
�� ���
 � ��� � ��� � ��
p �����������������������������������
�	�����������	��������
��������	������

���
������������

�	
��
���
��������������

seedE �x a��	���a a���a��a �d��
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� �acdac��
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�
f��f ff�
dcde e���	�dd b
����c� ���d�ca� �dfe�fc	 ����	��a

��	e
��� ea	f���f �e�
���� cc����
�
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b �x b����fa� e��ee�e� �
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�d�c�e fe
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yG �x ����de�a �����c�f 	d�e�
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�	�����������	�����������	�������	����
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�	���
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Curve P���� �p � ����� ��
p �
������������������
��������
������������	��������	����������	��
		���
��

���	��	����		��������	�		��������������
�
	
�������
����������
��	����
���

��	�	��	�

seedE �x d��e

�� ���cb
	� ��cc���� ����
�aa a�da��ba

r �x �b� 
bfa	f�� �a�����	 ��d�bdfc ���eeeeb ����

e� �fbf�ad
 f�d�edb�

�bd�b	�� �
����	� 
e��f�b� ffbe�fe� ed
a�c�� ��b
f
�	 e	��
�
c ��c�e	bf

		bad���

a �

b �x �	� �	�eb��� 
e�c�a�f ���a��a� b�
	��ee a�da��	b ��b��	f� b
b�
���


ef���e� 	�����	� ec�e���b ��	�c�bd �bb�bf�� �	��df

 �d�c��f� ef�	�fd�

�b	��f��

xG �x �c� 
	
e��b� ����e�cd �e�ecb�� ���	b��� �c��
��� �	�fb	�� f
�
af��

�b�d�dba a��b	e�� efe�	��
 fe�dc��� a�ffa
de ���
b�c� 
	�a���b f��e�e��

c�e	bd��

yG �x ��
 �����a�
 �a�bc��� 	c
a	fb� �c�d�bd� �
f	���� 	��b���
 ��afbd��

���e���c ��ee���� 	ef����� c		�b��� �fad���� �	�c��
� a���c��� 

be����

�fd���	�

n �
������������������
��������
������������	��������	����������	��
		���
��

���		�����	�	�������������	��������������������
����
�������
�������
�

��

�����	���

h �

������ Koblitz Elliptic Curves Over F�m

The parameters of the �same� Koblitz curve and base point are given in both normal basis repre�

sentation �indicated by FR� and in polynomial basis representation �indicated by FR��� A method

for converting between the two representations is given in x������ The following parameters are
given for each Koblitz curve�
m The extension degree of the binary �eld F�m �

FR An indication of the representation used for the elements of F�m in accordance

with ANSI X��
� �see x�����
a� b The coe�cients of the elliptic curve y� � xy � x� � ax� � b�

xG� yG The x and y coordinates of the base point G�

n The �prime� order of G�

h The co�factor�

FR� An indication of the second representation used for the elements of F�m in accor�

dance with ANSI X��
��

a�� b� The coe�cients of the �same� elliptic curve using representation FR��

xG�� yG� The x and y coordinates of the �same� base point G using representation FR��
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Curve K��
�

m ���

FR Gaussian Normal Basis� T��

a �

b �

xG �x � 	���b�	� caa��
�	 fea�d��� �ba�	�da �c�a�	��

yG �x � �	b�c��� ��	��
�� ��bac�d� dec��a
� 		��edb�

n 	
�����	�����������
������	�	�
��
��
�����
	�����

h �

FR� Polynomial basis with reduction polynomial f�x� � x���� � x�� � x�� � x�� � �

a� �

b� �

xG� �x � fe��c�	� �bbc��ac aa��d��� de�e�d	e 	c��eee


yG� �x � 
����fb� 	d�
ff	
 ���f�e
� �	��d	�
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Curve K����

m ���

FR Gaussian Normal Basis� T��

a �

b �
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n ��	�
�������	�
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�������������
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���	������
�
����������

h �

FR� Polynomial basis with reduction polynomial f�x� � x���� � x��� � �

a� �

b� �

xG� �x ��� ��ba
	�a �e���af� ��f��ff� ���	��a� ��c��bf	 �a�c�d�e efad����

yG� �x �db 	��dece
 ��b�f��f 			a��c� ��a
cd�b f�
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Curve K��	�

m �
�

FR Gaussian Normal Basis� T��

a �

b �
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�
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��

h �

FR� Polynomial basis with reduction polynomial f�x� � x��
� � x��� � x�� � x�	 � �

a� �

b� �

xG� �x 	�����f �
ca��

 �f�a�b
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����� b�c�ac��
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FR� Polynomial basis with reduction polynomial f�x� � x�	�� � x��� � x�	 � x�� � �
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������ Random Elliptic Curves Over F�m

Each random elliptic curve over F�m was generated using Algorithm � of x������ The output
of SHA�� was interpreted as an element of a binary �eld represented with a Gaussian normal

basis� The parameters of the �same� elliptic curve and base point are given in both normal basis

representation �indicated by FR� and in polynomial basis representation �indicated by FR��� A

method for converting between the two representations is given in x������ The following parameters
are given for each elliptic curve�
m The extension degree of the binary �eld F�m �

FR An indication of the representation used for the elements of F�m in accordance

with ANSI X��
� �see x�����
seedE The seed used to randomly generate the coe�cients of the elliptic curve using

Algorithm � of x������
a� b The coe�cients of the elliptic curve y� � xy � x� � ax� � b�

xG� yG The x and y coordinates of the base point G�

n The �prime� order of G�

h The co�factor�

FR� An indication of the second representation used for the elements of F�m in accor�

dance with ANSI X��
��

a�� b� The coe�cients of the �same� elliptic curve using representation FR��

xG�� yG� The x and y coordinates of the �same� base point G using representation FR��
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������ Converting Between Polynomial and Normal Basis Representations

This subsection describes one method� utilizing multiplication by a change�of�basis matrix� for

converting the elements of F�m represented with respect to a particular polynomial basis� to the

elements of F�m represented with respect to a particular normal basis� and vice versa� The change�

of�basis matrices for converting between the polynomial basis and normal basis representations of

the �elds F���� � F���� � F���� � F���	 and F�
�� given in x������ and x������ are presented� There are
other methods available for performing the conversions� e�g�� see Kaliski and Yin ��	��

Normal Basis to Polynomial Basis Conversion� Suppose that � is an element of the �eld

F�m � Let a be its bit string representation with respect to a given normal basis� and let a be its

bit string representation with respect to a given polynomial basis� Then a can be derived from a

via the matrix computation a � aA� where A is an m 	m binary matrix� The matrix A� which

depends only on the bases� can be computed easily given its top row R as follows� Let � be the

element of F�m whose representation with respect to the polynomial basis is R� Then the rows

of A� from top to bottom� are the bit strings representing the elements �� ��� ��
�

� � � � � ��
m��

with

respect to the polynomial basis�

The following gives the top row R for each conversion from the normal bases indicated by FR

in x������ and x������ to the polynomial bases indicated by FR� in x������ and x�������
m���� �x � �	���c�� �c���e�� �d���c�� 
���bcd� b��a�bef

m���� �x ��� �e��
ac	 d��e��
	 	�b�	ca� �bb���	d a�c����b cf�e���� �	����c�
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� �x ��e�ed� ��c��
�d c	���a�� �
�
���d �	�e
c�a b
������ bc�d���e ba�
��fc

�b���a��

m���� �x �dfa��b e���aa�� b�a��fff b�b�c		f 
f��
��� fbe
�
�b ���
adf� ����ccc


e�f��a�� e�cfb��	 �	��b�

 ���c���� �e
	��
d

m�	�� �x �	��
�b bf	
��a� bcf
c�f� �a	�efa� �e
��b�� c�d����� ��c�d��b �
�bf���

���c
��� f��d���
 beb�	ee
 ����d��
 
���caeb da�ce�	a eb�ca	cf �c����bd

�������f �c�a��c�

Polynomial Basis to Normal Basis Conversion� Suppose that � is an element of the �eld

F�m � Let a be its bit string representation with respect to a given normal basis� and let a be its

bit string representation with respect to a given polynomial basis� Then a can be derived from a

via the matrix computation a � aB� where B is an m 	m binary matrix� The matrix B� which

depends only on the bases� can be computed easily given its second�to�last row S as follows� Let �

be the element of F�m whose representation with respect to the normal basis is S� Then the rows

of B� from top to bottom� are the bit strings representing the elements �m��� �m��� � � � � ��� �� �

with respect to the normal basis�

The following gives the second�to�last row S for each conversion from the polynomial bases

indicated by FR� in x������ and x������ to the normal bases indicated by FR in x������ and x�������
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�� Conclusions

ECDSA is now an ANSI� IEEE� NIST and ISO standard and is being standardized by several other

standards organizations� This paper described the ANSI X��
� ECDSA� presented rationale for

some design decisions� and discussed related security� implementation� and interoperability issues�

We hope that this document contributes to an increased understanding of the properties of ECDSA�

and facilitates its use in practice�
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